
1

5/21/2002 188

Memory Hierarchy

5/21/2002 189

Introduction

� Problem: Suppose your processor issues one instruction per cycle and
that 30% of the instructions are loads/stores.

� How many memory references per instruction are there?
� How much memory bandwidth do you require?

� Now what if the processor wishes to issue 4 instructions per cycle?
� Solution: Build a memory hierarchy.

� One or more levels of cache in the CPU (fast, SRAM, $)
� Maybe another level of cache outside of the CPU (slower, cheaper)
� Main memory (slowest, cheapest)

� Trend: CPU speeds are increasing faster than memory access times are
increasing...

5/21/2002 190

Mem Hierarchy in Pictures

CPU

Register File

On Chip Cache

Off Chip Cache

Main Memory

Disk

Fast, small (100s of bytes)

8-128 KB, Split I and D caches

32KB - 1+ MB

100s of MB

"Unlimited"

5/21/2002 191

Caches

� Register file is not big enough to keep everything.
� Main memory is too far away -- it takes many cycles to access it.
� Put fast memory between the main memory and the registers: a cache
� When fetching an instruction (or performing a load) first check the cache.

� If we find the address there, use that value.
� If we don't find the address, fetch from memory and update the cache.

� When performing a store, first write it in the cache before updating main
memory.

� Every current micro has at least 2 levels of cache.

5/21/2002 192

Memory Technologies

� Technologies:

$.25/MB10-10010s to 100s ns256+MBPrimary

$.01/MB1,000,00010s of ms10s of GBSecondary

$10/MB5-1010s of ns64-256KBL2 Cache

??1-2nanoseconds16-64KBL1 Cache

CostRelative speed (compared
to reg access)

Access timeSizeType

5/21/2002 193

Locality

� Memory hierarchies work because programs exhibit locality:
� Temporal: data (code) used in the past is likely to be used again in the future (eg.

loops, stacks, etc.)
� Spatial: data (code) close to the code that you are presently using is likely to be

used in the near future (eg. traversing an array, sequences of instructions)

2

5/21/2002 194

Terminology & Characteristics

� A block (or line) is the fundamental unit of data we transfer between two
levels of the hierarchy.

� Where can a block be placed?
� Depends on the organization.

� How do we find a block?
� Each entry carries its own name (or tag).

� Which block do we replace when we bring in a new block?
� One block (might) need to be kicked out. Depends on the replacement policy.

� What happens on a write?
� Depends on the write policy.

5/21/2002 195

A Direct-Mapped Cache

5/21/2002 196

Spatial Locality: Bigger Blocks

5/21/2002 197

Cache Performance

� Basic metric is hit rate (h)

number of memory references that hit in cache

hit rate = ---

total number of memory references

� Miss rate = 1-h
� Now we can count stall cycles:

memory stall cycles = m * (total memory accesses) * miss penalty

� Now add this factor to basic equation:

CPU time = (CPU clock cycles + memory stall cycles) * cycletime

5/21/2002 198

Performance 2

� Memory accesses per instruction depends on the mix, but is always > 1.
Why?

� Example: gcc has 33% loads/stores, so it has 1.33 accesses/instruction
� Let's say our miss rate is 10% and the miss penalty is 20 cycles and our

CPI = 1.8 (not counting memory stall cycles).
� What's the real CPI?

� Danger: building a processor with better CPI, but neglecting the memory
performance...

5/21/2002 199

Taxonomy of Misses

� The 3 Cs:
� Compulsory (cold) misses: there will be misses the first time you touch a block of

memory.
� Capacity misses: the cache is not big enough to hold all the blocks you want.
� Conflict misses: two blocks are mapped to the same location and there is not

enough room in that location...

3

5/21/2002 200

Design Parameters

� We can vary many parameters.
� The goal is to get the hit rate as high as possible, without making Tcache

(cache access time) too big:
� Size: Bigger caches = higher hit rates, but higher Tcache. Reduce capacity misses.
� Block size: Larger blocks = higher hit rates, exploit spatial locality, but increase

Tmem
� Associativity: Smaller associativity = lower Tcache but lower hit rates
� Write policy: later.
� Replacement policy: later

5/21/2002 201

Block Size

� Block size is the number of bytes of data stored into one cache line.
� On a miss, a whole block is brought into the cache.
� Larger blocks have these advantages:

� Decrease miss rate IF the program exhibits good spatial locality.
� Increase transfer efficiency between cache and main memory.
� Need fewer tags.

� ... and drawbacks:
� Increase the latency of memory transfer.
� Might bring unused data IF the program has poor spatial locality.
� Increase conflict misses.

5/21/2002 202

Associativity

� The mapping of memory locations to cache locations can be fully general
to very restrictive.

� Fully associative:
� A memory location can be mapped anywhere in the cache.
� Doing a lookup is expensive.

� Set associative:
� A memory location can map to a set (usually 2, 4, 8) locations.

� Direct mapped:
� A memory location maps to just one location.

� Set associativity reduces conflict misses.

5/21/2002 203

In Pictures

5/21/2002 204

Replacement Policy

� On a read miss, we bring data into the cache.
� What if there's no room? Need to kick an item out.
� Direct mapped: easy, just replace the item...
� For set associative, we can replace any item in the set. Which is best:

� Random
� FIFO (the oldest one)
� LRU (the least recently used one)

� For caches, replacement policy has minimal impact on performance...

5/21/2002 205

Write Policy

� When we write a location, it's either in the cache (write hit) or not (write
miss)

� On a write hit, we'll update the cached value (obviously) but what about
main memory?

� Two choices:
� Write through -- update memory right away.
� Write back -- update memory only when replacing the block...

4

5/21/2002 206

Write through

� The good:
� Memory is always current (coherent); easier for I/O (see later)
� Read misses don't result in writes to a lower level.
� Easy to implement.

� The bad:
� Writes occur at the speed of main memory (not the cache!)
� Requires more memory bandwidth since every write goes to memory.

5/21/2002 207

Write back

� Only update the entry in the cache. Only write main memory when we replace a
block.

� This requires a dirty bit per block to indicate if the block has been written.
� On replacement, if the dirty bit is set, we need to write back the block, otherwise we

don't care. Detail: reset the dirty bit when we bring in the new block!
� Good:

� All writes occur at the speed of cache memory.
� Less memory bandwidth needed.

� Disadvantages:
� Coherency problems
� Replacement can be expensive (incurring additional writes!)

5/21/2002 208

Write Misses

� Again, there are choices:
� Write around -- write only in memory (aka no-fetch)
� Write allocate -- bring data into the cache and then write it.

� Note these policies are independent of the write hit policy!
� On write-allocate write-back, we need to write back the replaced block if

dirty.
� On write-around write-back, we still need to write back dirty blocks on

replacement.

5/21/2002 209

Optimizations

� Sub-block placement:
� For lines with multiple words, have one dirty and one valid bit per word.
� Can read only individual words.
� Only write back the dirty words.

� Write buffers:
� A small (1-10 items) buffer between cache and main memory.
� Each entry is a pair: <address> <data>
� The stores to memory go through this buffer. The buffer is emptied while the CPU

is working.
� Still has to stall if the buffer fills up: when writes occur in bursts.
� Why can the buffer be so small?

5/21/2002 210

Split vs. Unified Caches

� Early caches were unified.
� RISCs require an instruction per cycles AND (possibly) a load/store.
� For this reason, modern machines split the cache into an I-cache and D-

cache. This gives the illusion of two memories.
� Larger, off-chip caches are unified.
� I-caches can be simpler, because they are read-only

5/21/2002 211

Coherency

� Most Disk I/O transfers data directly from disk to memory.
� We'll use this terminology:

� read: transfer from disk to memory
� write: transfer from memory to disk

� Reads:
� Write through and write back: data transferred during the read must invalidate

corresponding cache entries.

� Writes:
� Write-back: the cached data may not be coherent with memory before a write.
� Need to flush the cache.

