Address Translation & Virtual Memory

Evolution

6/5/2002 n

* Initially, each program ran alone on the machine, using all of the
available memory.

* It was linked at a known starting address (like 0).
* All memory addresses were physical.

*Problem: This single program model doesn't utilize resources well. When
a program blocks for 1/0, the CPU sits idle for a long time.

*Solution: Do some other work in the meantime: multjprogramming.
* Issues:

* Protection, sharing, addressing.

6/5/2002 03

Solution: Base & Length Registers

* Compile/link programs starting at address zero.

*Place programs into contiguous free blocks of memory and translate
virtval addressesinto physical addresses:

Relocation & Protection

Program A PhysicalAddress = Base + VirtualAdd
If (VirtualAddress > Length) raise exception
Program B
Base register
Program C
9 Length Register
65002 M

* Base/Length registers support relocation & protection.

* Each program thinks it is the only program in memory, starting at
address zero.

* All addresses are translated (by hardware) via the base register.
* The length register provides profection.
* Fragmentation is the main problem:

* As programs come and go, memory get chopped up.

* There may be enough total memory for a program to run, but it must be
contiguous.

6/5/2002 25

Paging

*Basicidea: divide the virtual address space up into equal sized chunks:
pages.

* Divide physical memory into equal sized chunks: frames.

* Provide relocation information for every program, so any virtual page
can be mapped to any physical frame.

* Memory hierarchy: physical memory acts like a fully associative cache
between the processor and disk. Pages are blocks.

* Disk transfers are costly, so:

* Make pages big, to amortize cost of transfer

* Write-back policy is used.

Software Mechanism: Page Table

I Pasme tabla roaier]

6/5/2002 2

Virtual address

31 D0 2O 20 B/ meeseeemeeesaeiain 15 14 13 12 11 10 9 Geeenen 3210

| Vil page number | Page oftset |

Jzo Joz

vand Physical page number

Page table

Joe
It O then page is not
present in mamary

29 28 27 ceeeremnnneneeoicon 15 14 13 12 11109 8- f.-.32 10

Physical page number Page affset

Phiysical sadiiess

6/5/2002 2

Page Tables

* Paging allows for a virtual address space that is larger than the physical
memory.
* Each page table entry (PTE) indicates:
* where the virtual page lives (physical frame)
* valid bit: is the page in memory?
* dirty bit: has the page been modified
* protection bits: used to control read/write access
« reference bits: used for replacement policy
* A program can run without having all of its pages in memory. The unused
pages reside on disk.

6/5/2002 08

Page Tables
Virtual page
number
Page table
— Phycioal pate or Physical memory

Valid disk address
1 -—
1 -—
1 ——
1 — |
0 .
1 L
1
o L4
1 & 5L Disk storage.
1 I
o 4
1 o

p
52002 -

Processes

* A process (a program in execution) is defined by:
* Registers: P(, stack pointer, general registers
* Page table(s)
* Bookkeeping: open files, process ID, time used, etc
* On a uniprocessor, only one process runs at a time. Switching from one
process to another is called a context switch.
* Switching from A to B requires: saving A's state (registers, etc) and then
restoring B's state, and jumping to B's PC.
« Different states: running, ready, waiting

Protection & Sharing

6/5/2002 m

* Protection: a program cannot generate an address that accesses another
program's data.

* Processes cannot be allowed to modify their own page tables, obviously...

* Sharing: If two PTE's from different process point to the same physical
frame, then those processes can share that data.

6/5/2002 m

Speeding Translation: TLBs

*To do an address translation, we have to do a lookup in the page table.
* Translation costs (at least) one extra memory access.

* Solution: build special hardware (Translation Lookaside Buffer) to "cache"
the PTEs

Vinuol Page #

Tag (VPN) Data (PFN) hit/miss

PFN
* Physical Address

TLBs are usually small (~64 entries) and fully associative

Memory Accesses

6/5/2002 m

TLB Lookup

miss hit

Look up PTE

Access Cache

invalid

Reload TLB Fetch data

Handle Page from main

Read from cache

and restart

fault (get page
from disk)

program memory

6/5/2002 m

TLB Organization

* TLBs are small caches holding TLBs.

* MIPS: fully associative, write-allocate, write-back, random replacement.
64 entries.

* Looking up a PTE (on a TLB miss) and putting it into the TLB is
accomplished in software (10-30 cycles).

* What happens on a context switch? The PTEs are no longer valid for the
new process. Options:

* Flush the TLB on each context switch (expensive)

* Append a process ID to the virtual address. This way, the TLB can hold entries for
more than one process.

Page Faults

6/5/2002 m

* Pages live in memory or on disk.
* Page fault: when a program references a page that is not in memory.
* Resolving the fault takes a long time, because we have to go fo disk.
* The 0S resolves it as follows:

* Find a free physical frame (on a free list or a frame needs to be replaced)

* Find where the faulting page resides on disk

* Initiate the read from disk into the memory frame.

* Now switch in a new process because the disk operation will take a long time.

* When the transfer completes, modify the PTE to make it valid and restart the
faulting program.

6/5/2002 s

Summary

*VMis just another level of the memory hierarchy
* pages = blocks; faults = cache misses
* Misses are expensive. Keep the miss rate low by:
* large blocks
* fully associative mapping (need page tables)
* careful replacement (see CSE451)
* Writes are expensive. Use a write-back scheme.
* Address translation is key: it provides protection, sharing, memory
mapping.
* Translation is done in hardware, mostly.

6/5/2002 n

