
1

6/5/2002 212

Address Translation & Virtual Memory

6/5/2002 213

Evolution

� Initially, each program ran alone on the machine, using all of the
available memory.

� It was linked at a known starting address (like 0).
� All memory addresses were physical.
� Problem: This single program model doesn't utilize resources well. When

a program blocks for I/O, the CPU sits idle for a long time.
� Solution: Do some other work in the meantime: multiprogramming.
� Issues:

� Protection, sharing, addressing.

6/5/2002 214

Solution: Base & Length Registers

� Compile/link programs starting at address zero.
� Place programs into contiguous free blocks of memory and translate

virtual addresses into physical addresses:

Program A

Program B

Program C

Base register

Length Register

PhysicalAddress = Base + VirtualAddress

If (VirtualAddress > Length) raise exception

6/5/2002 215

Relocation & Protection

� Base/Length registers support relocation & protection.
� Each program thinks it is the only program in memory, starting at

address zero.
� All addresses are translated (by hardware) via the base register.
� The length register provides protection.
� Fragmentation is the main problem:

� As programs come and go, memory get chopped up.
� There may be enough total memory for a program to run, but it must be

contiguous.

6/5/2002 216

Paging

� Basic idea: divide the virtual address space up into equal sized chunks:
pages.

� Divide physical memory into equal sized chunks: frames.
� Provide relocation information for every program, so any virtual page

can be mapped to any physical frame.
� Memory hierarchy: physical memory acts like a fully associative cache

between the processor and disk. Pages are blocks.
� Disk transfers are costly, so:

� Make pages big, to amortize cost of transfer
� Write-back policy is used.

6/5/2002 217

Software Mechanism: Page Table

2

6/5/2002 218

Page Tables

� Paging allows for a virtual address space that is larger than the physical
memory.

� Each page table entry (PTE) indicates:
� where the virtual page lives (physical frame)
� valid bit: is the page in memory?
� dirty bit: has the page been modified
� protection bits: used to control read/write access
� reference bits: used for replacement policy

� A program can run without having all of its pages in memory. The unused
pages reside on disk.

6/5/2002 219

Page Tables

6/5/2002 220

Processes

� A process (a program in execution) is defined by:
� Registers: PC, stack pointer, general registers
� Page table(s)
� Bookkeeping: open files, process ID, time used, etc

� On a uniprocessor, only one process runs at a time. Switching from one
process to another is called a context switch.

� Switching from A to B requires: saving A's state (registers, etc) and then
restoring B's state, and jumping to B's PC.

� Different states: running, ready, waiting

6/5/2002 221

Protection & Sharing

� Protection: a program cannot generate an address that accesses another
program's data.

� Processes cannot be allowed to modify their own page tables, obviously...
� Sharing: If two PTE's from different process point to the same physical

frame, then those processes can share that data.

6/5/2002 222

Speeding Translation: TLBs

� To do an address translation, we have to do a lookup in the page table.
� Translation costs (at least) one extra memory access.
� Solution: build special hardware (Translation Lookaside Buffer) to "cache"

the PTEs

Virtual Page # offset

Tag (VPN) Data (PFN) hit/miss

PFN
Physical Address

TLBs are usually small (~64 entries) and fully associative

6/5/2002 223

Memory Accesses

TLB Lookup

Access Cache

Fetch data
from main
memory

Read from cache
Reload TLB
and restart
program

Look up PTE

Handle Page
fault (get page

from disk)

hitmiss

hit
missvalidinvalid

3

6/5/2002 224

TLB Organization

� TLBs are small caches holding TLBs.
� MIPS: fully associative, write-allocate, write-back, random replacement.

64 entries.
� Looking up a PTE (on a TLB miss) and putting it into the TLB is

accomplished in software (10-30 cycles).
� What happens on a context switch? The PTEs are no longer valid for the

new process. Options:
� Flush the TLB on each context switch (expensive)
� Append a process ID to the virtual address. This way, the TLB can hold entries for

more than one process.

6/5/2002 225

Page Faults

� Pages live in memory or on disk.
� Page fault: when a program references a page that is not in memory.
� Resolving the fault takes a long time, because we have to go to disk.
� The OS resolves it as follows:

� Find a free physical frame (on a free list or a frame needs to be replaced)
� Find where the faulting page resides on disk
� Initiate the read from disk into the memory frame.
� Now switch in a new process because the disk operation will take a long time.
� When the transfer completes, modify the PTE to make it valid and restart the

faulting program.

6/5/2002 226

Summary

� VM is just another level of the memory hierarchy
� pages = blocks; faults = cache misses
� Misses are expensive. Keep the miss rate low by:

� large blocks
� fully associative mapping (need page tables)
� careful replacement (see CSE451)

� Writes are expensive. Use a write-back scheme.
� Address translation is key: it provides protection, sharing, memory

mapping.
� Translation is done in hardware, mostly.

