
CSE378 Autumn 2002 1

The 3 C’s

Taxonomy of misses

Misses can be classified as:

Compulsory (or cold)

• caused by the first reference to a block

• how to reduce:

Capacity

• the cache is not big enough to hold all the blocks that were
referenced

• how to reduce:

Conflict

• the referenced blocks all map to the same set & all the blocks in
the set are valid

• how to reduce:

CSE378 Autumn 2002 2

Design Trade-offs

Cache size

the bigger the cache,

+

-

-

Calculating cache size

• cache size: # bytes of data

• different than the number of bits of memory needed to build
a cache (data, tags, state)

• # bytes/block * associativity * # sets

• example: 64KB cache, 32B blocks, 2-way set-associative

• what is the cache size?

• how many bits does it take to implement the cache?

CSE378 Autumn 2002 3

Design Tradeoffs

Block size

large blocks

+

+

+

-

-

-

CSE378 Autumn 2002 4

Design Tradeoffs

Block size

large blocks

+ can take better advantage of spatial locality (& reduce
compulsory misses)

+ have better transfer efficiency when transferring data from
memory
• less block transfer overhead per block

the overhead: 1 address transmission & 1 memory
lookup for a block of any size

• amortize the overhead by transferring many words in 1
memory request

+ have less tag overhead (for the same size cache)

• 64KB, direct-mapped, 4B blocks: 214 tags (sets)

• 64KB, direct-mapped, 16B blocks: 212 tags

- have larger transfer latency
- might not access all the bytes in the block

• have transferred the words from memory for nothing
- might increase capacity misses because bigger blocks

means fewer blocks in the cache

CSE378 Autumn 2002 5

Design Tradeoffs

Associativity

with a larger associativity:

+ higher hit ratio
• more places to put data for a particular index value

(reduces conflict misses)
• more important for small caches
• gains diminish as increase associativity

- slightly larger hardware cost
• comparator for each block in the set

- increase in tag bits (decrease index bits)

- slightly larger cache access time (a MUX or a larger MUX)
- need block replacement hardware

CSE378 Autumn 2002 6

Design Tradeoffs

Block replacement : which block you replace on a cache miss

• LRU (least recently used)

• toggle between bit values for 2-way
• counters for more associativity

• random

• for example, low bits of the cycle counter

• little impact on performance

CSE378 Autumn 2002 7

Design Tradeoffs

Memory update policy

• write through

• update memory on each store (one word is written to
memory)

+ memory is always coherent (memory has the same value
as the cache)

- performance depends on the # of writes

Hiding write latency with write through

• write buffer or store buffer
• contains data & its address until data is written to

memory
• CPU writes data into the cache & write buffer & then

continues execution
• memory is updated when the processor-memory bus is

free
• CPU must stall if the write buffer is full

• must check write buffer on a cache read miss: why?

CSE378 Autumn 2002 8

Design Tradeoffs

Memory update policy

• write back

• update memory when the block is replaced from the cache
+ performance depends on the # of block replacements

- add a dirty bit to each block’s state
• clear dirty bit when a block is read into the cache

(clean block)
• set dirty bit when the block is updated (dirty block)
• on a block replacement, if the dirty bit is set, write the

block to memory
• performance depends on the # of dirty block

replacements (even smaller!)

- must do a tag check before the write to make sure this is the
right block
• if the block is one word, write-through can just write

- takes more time than write-through
• must check the tag before updating the cache
• can you still do this in a single cycle?

- memory is not coherent
• must flush blocks from the cache before writing to disk

Hiding write latency with write back

• the dirty block can be buffered while the new block is being
fetched

• replaced after control returns to the CPU

CSE378 Autumn 2002 9

Design Tradeoffs

Cache contents

• separate instruction & data caches

+ separate access ⇒ double the bandwidth

• not have to stall the fetch if a load is at the same time

+ shorter access time than 1 larger cache for both
+ different configurations for I & D: why?

• implemented as the first-level, on-chip cache

• unified cache

+ lower miss rate if same size as the sum of the separate
caches
• more flexibility in where blocks can be placed

+ less cache controller* hardware since only 1 cache

(* logic that implements cache accesses, hits, misses)

• implemented as the second-level cache

CSE378 Autumn 2002 10

Cache Performance

Hit (miss) rate =

• miss rate = 1- hit rate

• intermediate (component) metric

• measures how well the cache functions

• useful for understanding cache behavior relative to the number
of references

references that hit (miss)
references

--

CSE378 Autumn 2002 11

Cache Performance

Average memory access time =

HitTime + MissRatio * MissPenalty

• always incur hit time because either:

• a reference hits or

• on a miss you access the cache again after the block is
brought into the cache (this time it does hit!)

• (rough) average time it takes to do a memory reference

• performance of the memory system, including factors that
depend on the implementation (the miss penalty)

• intermediate (component) metric

Miss penalty =

• send the address to memory +

• access the memory +

• transfer the data (block size (in words) * transfer time for 1 word)

(assuming the bus is 1 word wide)

CSE378 Autumn 2002 12

Execution Time

Including the memory system in execution time

(hit time is included in CPU execution cycles)

• might have different miss ratios for data & instructions

• memory stall cycles are measured in CPU cycles

• the faster the clock rate, the larger the miss penalty

• the lower the CPI, the greater the impact of memory stall cycles
(Amdahl’s Law in practice again)

Look at the performance examples on pp. 565-568

CPU time CPU execution cyclesmemory stall cycles+() cycle time×=

memory stall cycles
memory accesses

program
--- miss rate miss penalty××=

instructions
program

---------------------------- misses
instruction
------------------------- miss penalty××

misses
instruction
------------------------- instruction miss rate data miss rate

data references
instruction

------------------------------------× 
 +=

