
CSE378 Autumn 2002 1

Exceptions

Definition:

• all “unexpected” events in the normal flow of execution

• interrupts, traps, faults, aborts, exceptions

• exceptions caused by instruction execution within the
processor

• interrupts caused by some event external to the
processor

Some examples:

CSE378 Autumn 2002 2

Exception Handling

Identify the instruction that caused the exception

• pipelines execute several instructions at once:
how determine which one caused the exception?

• exception program counter (EPC in MIPS)

Identify the reason for the exception

• status register (Cause register in MIPS)

• vectored interrupts : bit vector for causes of interrupts

• each bit stands for a different interrupt

• bit is set when the interrupt occurs

Force trap instruction into pipeline

• status register

• single entry point for all exceptions

• OS checks the status register to determine which service
routine to use

• vectored interrupts

• table of starting addresses for the interrupt service routines
• use the set bit in the bit vector to index into the table

CSE378 Autumn 2002 3

A 5-Stage Pipeline

CSE378 Autumn 2002 4

Exception Handling, cont’d.

Execute the trap/interrupt routine

• kill the program (arithmetic overflow, undefined opcode,
hardware malfunction)

• service the trap/interrupt & restart the faulting & subsequent
instructions (page fault, I/O device request)

• save the state of the process
• PC, registers
• EPC, Cause register
• page table address register, TLB contents, PID register

• determine the address that caused the exception
• usually it’s in EPC
• if a data page fault, the base register + offset of the

instruction whose address is in EPC
• if servicing the exception requires using the disk, context

switch this process out & another one in
context switch the first process back in when the I/O has
completed

• restore the state of the process

• reexecute the excepting instruction

CSE378 Autumn 2002 5

Exceptions in a Pipeline

Example exception: arithmetic overflow

Save the restart address :

• an exception PC

• trap handler has to decrement it when used (by now it’s PC+4)

Record the cause of the exception :

• Cause register

Flush the faulting instruction :

• EX.FLUSH control signal

• MUXes to choose between passing values from ID/EX to EX/
MEM pipeline registers or zeroing them

Flush the subsequent instructions in IF and ID

• IF.Flush control signal is already there (why?)

• ID.Flush control signal and OR gate
hardwired zero lines & MUX to choose them already there
(why?)

Jam in the address for the exception handler :

• hardwired input to PC MUX

CSE378 Autumn 2002 6

Prioritizing Exceptions

What if simultaneous interrupts?

• match the exception to the instruction

• handle the exception for the earlier instruction first

• restart: second will reoccur

• now handle the second

Some asynchronous exceptions can be handled later

Some exceptions have higher priority

• hardware malfunction

• arithmetic overflow

• I/O device request

