Superscalars

Definition:
* aprocessor that can issue & execute more than one instruction
per cycle

« for example,
integer computation, floating point computation, data transfer,
transfer of control

. = the number of , 1 slot/instruction
¢ the hardware decides which instructions can issue
« static scheduling processors:

« how many of the next n instructions can be issued,
where nis the superscalar issue width

¢ dynamic scheduling processors (a little later)

Sometimes there are restrictions on what type of instructions can
issue together, for example:

» R-type or conditional branch
¢ memory operation
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2-way Superscalar
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Superscalars

Performance impact:

* increase performance because execute instructions in parallel,
not just overlapped

« CPI potentially < 1 (.5 on our R3000 example) or
IPC (instructions/cycle) potentially > 1 (2 on our R3000

example)

« get better functional unit utilization

but

* need to execute instructions in
parallel
i.e., enough
« instructions without data dependences

* needa to utilize the different types of

functional units
» need more instructions to hide load delays -- why?
« need to make better branch predictions --- why?
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Superscalars

Hardware impact:

« multiple functional units
How many ALUs on our R3000 superscalar?

« additional read/write ports on the register file
How many read/write ports on our R3000 superscalar?

* more buses from the register file to the added functional units
« multiple decoders

* more hazard detection logic

« more forwarding logic

« wider instruction fetch

or else the processor has structural hazards (due to an unbalanced
design) and stalling!
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Code Scheduling

Code scheduling creates sequences of independent instructions
i.e., to exploit ILP
i.e., to break dependences

Loop:  Iw $tO, O(s1)
addu $t0, $t0, $s2
sw $t0, 0($s1)
addi $s1, $s1, -4
bne $s1, $0, Loop

CSE378 Autumn 2002 5

Code Scheduling on Superscalars

Loop:  Iw $tO, O(s1)

addu $t0, $t0, $s2
sw $tO, ($s1)
bne $s1, $0, Loop

ALU/branch instruction Data transfer instructiongl)?cﬁz
Loop: |addi $sl, $s1, -4 Iw $td, O($s1) 1
2
addu $t0, $t0, $s2 3
bne $s1, $0, Loop sw $tO, 4($s1) 4

lw addu sw s the critical path

Illustrates why CPI is not .5!

CSE378 Autumn 2002



Loop Unrolling

ALU/branch instruction | Data transfer instructionii?cclz
Loop: addi $s1, $s1, -16 | Iw $t0, 0($s1) 1
Iw $t1, 12($s1) 2
addu $t0, $t0, $s2 Iw $t2, 8($s1) 3
addu , , $s2 |w $t3, 4($s1) 4
addu , , $s2 sw $tO, 16($s1) 5
addu , , $s2 sw $tl, 12($s1) 6
sw$t2,  8($s1) 7
bne $s1, $0, Loop sw $t3, 4($s1) 8
Loop unrolling provides
+ fewer instructions that can cause branch hazards
+ more independent instructions (from different iterations)
+ increase in throughput
- uses
- must change offsets
What is the cycles per iteration?
What is the IPC?
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In-order vs. Out-of-Order Execution

In-order instruction execution
« instructions are fetched, executed & retired in compiler-
generated order
« if one instruction stalls, all instructions behind it stall
« instructions are by the processor

* means the hardware schedules them onto functional units
in their compiler-generated order

« hardware algorithm: how many of the next n instructions
can be executed, where n is the superscalar issue width

« superscalars can have data & structural hazards within
the n instructions

« advantages of in-order execution
« simpler implementation (]

« faster clock cycle
« fewer transistors
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In-order vs. Out-of-Order Execution

Out-of-order execution

CSE378

instructions are fetched in compiler-generated order
instructions complete in compiler-generated order

in between they may be executed out of their compiler-
generated order

instructions are by the hardware
¢ hardware decides in what order instructions can be
executed

« instructions behind a stalled instruction can pass it
advantages: better performance

 better at hiding latencies; less processor stalling; higher
throughput
« better utilization of functional units
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Dynamically Scheduled Processors

Dynamically scheduled or out-or-order processors:

do not necessarily issue instructions in program (compiler-
generated) order

issue instructions as soon as their operands are available
« have been calculated in the ALU
* have been loaded from memory

ready instructions can issue before stalled instructions that are
waiting for their operands to be computed

when go around a load instruction that is stalled for a cache
miss:
e use that allow instruction issue to
continue while a miss is being satisfied
« the load-use instruction still stalls

when go around a branch instruction:

« the instructions that are issued from the predicted path are
issued speculatively, called

« when the branch is resolved, if the prediction was wrong,
are flushed from the pipeline

instructions fetched and ( ) in order
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Dynamically Scheduled Processors

Instruction issue does necessarily go in program order
« the hardware decides which instructions should issue next

program order(in-order execution)

lw  $3, 100($4) in execution, cache miss
add $2, \$3, $4 waits until the miss is satisfied
sub $5, $6, $7 waits for the add

execution ordei(out-of-order execution)

lw  $3, 100($4) in execution, cache miss
sub $5, %6, $7 in execution
add $2, $3, $4 waits until the miss is satisfied --

flow dependence still upheld
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Superpipelining

Longer pipelines with shorter stages

* more work to do
example: dynamic instruction scheduling in an out-or-order
processor
¢ less work is done in each stage
examples:
data access in a high-performance processor: cache access
on one cycle & data returned on the next cycle
several cycles for decoding a CISC instruction set

Performance impact:

+ the increased instruction overlap can increase instruction
throughput

- additional stages can increase hazard penalties, usually the
branch misprediction penalty
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DEC Alpha 21164 Integer Unit Pipeline

Fetch & issue
: instruction fetch
dynamic branch prediction
: opcode decode
target address calculation
if predict taken, redirect the fetch
. decide which of the next 4 instructions can be issued
(includes an intra-cycle structural & data hazard check)
. inter-cycle load-data hazard check
register read
in-order instruction issue

Execute (2 pipelines, one for arithmetic & branches, one for loads &
stores)

. integer execution

effective address calculation
. branch execution

data cache access
. register write
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Designing a Pipeline-friendly Architecture

Architectural features that go well with pipelined implementations
¢ simple instructions
« all instructions take about the same number of stages
« work in all stages takes about the same amount of time
« fixed-length instructions
¢ can decode all instruction fields in parallel

« can fetch & decode multiple instructions in parallel
(superscalars)

« few instruction formats & fixed fields in most formats
« can decode all instruction fields in parallel

« can read operands, decode opcode & generate opcode-
specific control signals at the same time

* memory operands only in load/store instructions
« all instructions take about the same number of stages
« all stages take about the same amount of time

« can calculate the effective address in EX stage for a
shorter pipeline

What type of architecture does this describe?
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A Llttle Practice

add $5, $6, $7 D ,|:|, ]

w $6, 0($5) D {)< D 7D> ]

sub $7, 36, $8 D {< D ,D, ]

and $7, $6, $5 D

Are there any dependences in this code?
What kind & where?
Do they cause any hazards in the pipeline?

R
Y
i

If so, where?
Can the hazards be eliminated? How?

How many cycles does it take to execute this code?
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Review

Techniques that eliminate hazards.
What types of hazards to they eliminate?

¢ duplicate hardware

¢ move the hardware

e flush

 hardware interlock (stall)

« forwarding

¢ branch prediction

 insert a nop

« code schedule an independent instruction
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