
CSE378 Autumn 2002 1

Superscalars

Definition:

• a processor that can issue & execute more than one instruction
per cycle

• for example,
integer computation, floating point computation, data transfer,
transfer of control

• issue width = the number of issue slots , 1 slot/instruction

• the hardware decides which instructions can issue

• static scheduling processors:
• how many of the next n instructions can be issued,

where n is the superscalar issue width
• dynamic scheduling processors (a little later)

Sometimes there are restrictions on what type of instructions can
issue together, for example:

• R-type or conditional branch

• memory operation

CSE378 Autumn 2002 2

2-way Superscalar

and

lw

lw

bne

add

sub

sw

lw

CSE378 Autumn 2002 3

Superscalars

Performance impact:

• increase performance because execute instructions in parallel,
not just overlapped

• CPI potentially < 1 (.5 on our R3000 example) or
IPC (instructions/cycle) potentially > 1 (2 on our R3000
example)

• get better functional unit utilization

but

• need independent instructions to execute instructions in
parallel
i.e., enough instruction-level parallelism (ILP)

• instructions without data dependences

• need a good mix of instructions to utilize the different types of
functional units

• need more instructions to hide load delays -- why?

• need to make better branch predictions --- why?

CSE378 Autumn 2002 4

Superscalars

Hardware impact:

• multiple functional units
How many ALUs on our R3000 superscalar?

• additional read/write ports on the register file
How many read/write ports on our R3000 superscalar?

• more buses from the register file to the added functional units

• multiple decoders

• more hazard detection logic

• more forwarding logic

• wider instruction fetch

or else the processor has structural hazards (due to an unbalanced
design) and stalling!

CSE378 Autumn 2002 5

Code Scheduling

Code scheduling creates sequences of independent instructions
i.e., to exploit ILP
i.e., to break dependences

Loop: lw $t0, 0(s1)

addu $t0, $t0, $s2

sw $t0, 0($s1)

addi $s1, $s1, -4

bne $s1, $0, Loop

CSE378 Autumn 2002 6

Code Scheduling on Superscalars

Loop: lw $t0, 0(s1)

addi $s1, $s1, -4

addu $t0, $t0, $s2

sw $t0, 4($s1)

bne $s1, $0, Loop

lw addu sw is the critical path

Illustrates why CPI is not .5!

ALU/branch instruction Data transfer instruction
clock
cycle

Loop: addi $s1, $s1, -4 lw $t0, 0($s1) 1

2

addu $t0, $t0, $s2 3

bne $s1, $0, Loop sw $t0, 4($s1) 4

CSE378 Autumn 2002 7

Loop Unrolling

Loop unrolling provides

+ fewer instructions that can cause branch hazards

+ more independent instructions (from different iterations)

+ increase in throughput

- uses more registers

- must change offsets

What is the cycles per iteration?

What is the IPC?

ALU/branch instruction Data transfer instruction
clock
cycle

Loop: addi $s1, $s1, -16 lw $t0, 0($s1) 1

lw $t1, 12($s1) 2

addu $t0, $t0, $s2 lw $t2, 8($s1) 3

addu $t1 , $t1 , $s2 lw $t3, 4($s1) 4

addu $t2 , $t2 , $s2 sw $t0, 16($s1) 5

addu $t3 , $t3 , $s2 sw $t1, 12($s1) 6

sw $t2, 8($s1) 7

bne $s1, $0, Loop sw $t3, 4($s1) 8

CSE378 Autumn 2002 8

In-order vs. Out-of-Order Execution

In-order instruction execution

• instructions are fetched, executed & retired in compiler-
generated order

• if one instruction stalls, all instructions behind it stall

• instructions are statically scheduled by the processor

• means the hardware schedules them onto functional units
in their compiler-generated order

• hardware algorithm: how many of the next n instructions
can be executed, where n is the superscalar issue width

• superscalars can have data & structural hazards within
the n instructions

• advantages of in-order execution

• simpler implementation ⇒
• faster clock cycle
• fewer transistors

CSE378 Autumn 2002 9

In-order vs. Out-of-Order Execution

Out-of-order execution

• instructions are fetched in compiler-generated order

• instructions complete in compiler-generated order

• in between they may be executed out of their compiler-
generated order

• instructions are dynamically scheduled by the hardware

• hardware decides in what order instructions can be
executed

• instructions behind a stalled instruction can pass it

• advantages: better performance

• better at hiding latencies; less processor stalling; higher
throughput

• better utilization of functional units

CSE378 Autumn 2002 10

Dynamically Scheduled Processors

Dynamically scheduled or out-or-order processors:

• do not necessarily issue instructions in program (compiler-
generated) order

• issue instructions as soon as their operands are available

• have been calculated in the ALU
• have been loaded from memory

• ready instructions can issue before stalled instructions that are
waiting for their operands to be computed

• when go around a load instruction that is stalled for a cache
miss:

• use lockup-free caches that allow instruction issue to
continue while a miss is being satisfied

• the load-use instruction still stalls

• when go around a branch instruction:

• the instructions that are issued from the predicted path are
issued speculatively, called speculative execution

• when the branch is resolved, if the prediction was wrong,
wrong path instructions are flushed from the pipeline

• instructions fetched and retired (committed) in order

CSE378 Autumn 2002 11

Dynamically Scheduled Processors

Instruction issue does NOT necessarily go in program order

• the hardware decides which instructions should issue next

program order(in-order execution)

lw $3 , 100($4) in execution, cache miss

add $2, $3 , $4 waits until the miss is satisfied

sub $5, $6, $7 waits for the add

execution order(out-of-order execution)

lw $3 , 100($4) in execution, cache miss

sub $5, $6, $7 in execution

add $2, $3 , $4 waits until the miss is satisfied --
 flow dependence still upheld

CSE378 Autumn 2002 12

Superpipelining

Longer pipelines with shorter stages

• more work to do
example: dynamic instruction scheduling in an out-or-order

 processor

• less work is done in each stage
examples:
data access in a high-performance processor: cache access

 on one cycle & data returned on the next cycle
several cycles for decoding a CISC instruction set

Performance impact:

+ the increased instruction overlap can increase instruction
throughput

- additional stages can increase hazard penalties, usually the
branch misprediction penalty

CSE378 Autumn 2002 13

DEC Alpha 21164 Integer Unit Pipeline

Fetch & issue

S0: instruction fetch

dynamic branch prediction

S1: opcode decode

target address calculation

if predict taken, redirect the fetch

S2: decide which of the next 4 instructions can be issued

(includes an intra-cycle structural & data hazard check)

S3: inter-cycle load-data hazard check

register read

in-order instruction issue

Execute (2 pipelines, one for arithmetic & branches, one for loads &
stores)

S4: integer execution

effective address calculation

S5: branch execution

data cache access

S6: register write

CSE378 Autumn 2002 14

Designing a Pipeline-friendly Architecture

Architectural features that go well with pipelined implementations

• simple instructions

• all instructions take about the same number of stages
• work in all stages takes about the same amount of time

• fixed-length instructions

• can decode all instruction fields in parallel

• can fetch & decode multiple instructions in parallel
(superscalars)

• few instruction formats & fixed fields in most formats

• can decode all instruction fields in parallel
• can read operands, decode opcode & generate opcode-

specific control signals at the same time

• memory operands only in load/store instructions

• all instructions take about the same number of stages
• all stages take about the same amount of time

• can calculate the effective address in EX stage for a
shorter pipeline

What type of architecture does this describe?

CSE378 Autumn 2002 15

A LIttle Practice

Are there any dependences in this code?

What kind & where?

Do they cause any hazards in the pipeline?

If so, where?

Can the hazards be eliminated? How?

How many cycles does it take to execute this code?

sub $7, $6, $8

add $5, $6, $7

lw $6, 0($5)

and $7, $6, $5

CSE378 Autumn 2002 16

Review

Techniques that eliminate hazards.

What types of hazards to they eliminate?

• duplicate hardware

• move the hardware

• flush

• hardware interlock (stall)

• forwarding

• branch prediction

• insert a nop

• code schedule an independent instruction

