Superscalars

Definition:
* aprocessor that can issue & execute more than one instruction
per cycle

« for example,
integer computation, floating point computation, data transfer,
transfer of control

. = the number of , 1 slot/instruction
¢ the hardware decides which instructions can issue
« static scheduling processors:

« how many of the next n instructions can be issued,
where nis the superscalar issue width

¢ dynamic scheduling processors (a little later)

Sometimes there are restrictions on what type of instructions can
issue together, for example:

» R-type or conditional branch
¢ memory operation

CSE378 Autumn 2002 1

2-way Superscalar

add

)
%'

sub

CSE378 Autumn 2002 2

Superscalars

Performance impact:

* increase performance because execute instructions in parallel,
not just overlapped

« CPI potentially < 1 (.5 on our R3000 example) or
IPC (instructions/cycle) potentially > 1 (2 on our R3000

example)

« get better functional unit utilization

but

* need to execute instructions in
parallel
i.e., enough
« instructions without data dependences

* needa to utilize the different types of

functional units
» need more instructions to hide load delays -- why?
« need to make better branch predictions --- why?

CSE378 Autumn 2002 3

Superscalars

Hardware impact:

« multiple functional units
How many ALUs on our R3000 superscalar?

« additional read/write ports on the register file
How many read/write ports on our R3000 superscalar?

* more buses from the register file to the added functional units
« multiple decoders

* more hazard detection logic

« more forwarding logic

« wider instruction fetch

or else the processor has structural hazards (due to an unbalanced
design) and stalling!

CSE378 Autumn 2002 4

Code Scheduling

Code scheduling creates sequences of independent instructions
i.e., to exploit ILP
i.e., to break dependences

Loop: Iw $tO, O(s1)
addu $t0, $t0, $s2
sw $t0, 0($s1)
addi $s1, $s1, -4
bne $s1, $0, Loop

CSE378 Autumn 2002 5

Code Scheduling on Superscalars

Loop: Iw $tO, O(s1)

addu $t0, $t0, $s2
sw $tO, ($s1)
bne $s1, $0, Loop

ALU/branch instruction Data transfer instructiongl)?cﬁz
Loop: |addi $sl, $s1, -4 Iw $td, O($s1) 1
2
addu $t0, $t0, $s2 3
bne $s1, $0, Loop sw $tO, 4($s1) 4

lw addu sw s the critical path

Illustrates why CPI is not .5!

CSE378 Autumn 2002

Loop Unrolling

ALU/branch instruction | Data transfer instructionii?cclz
Loop: addi $s1, $s1, -16 | Iw $t0, 0($s1) 1
Iw $t1, 12($s1) 2
addu $t0, $t0, $s2 Iw $t2, 8($s1) 3
addu , , $s2 |w $t3, 4($s1) 4
addu , , $s2 sw $tO, 16($s1) 5
addu , , $s2 sw $tl, 12($s1) 6
sw$t2, 8($s1) 7
bne $s1, $0, Loop sw $t3, 4($s1) 8
Loop unrolling provides
+ fewer instructions that can cause branch hazards
+ more independent instructions (from different iterations)
+ increase in throughput
- uses
- must change offsets
What is the cycles per iteration?
What is the IPC?
CSE378 Autumn 2002 7

In-order vs. Out-of-Order Execution

In-order instruction execution
« instructions are fetched, executed & retired in compiler-
generated order
« if one instruction stalls, all instructions behind it stall
« instructions are by the processor

* means the hardware schedules them onto functional units
in their compiler-generated order

« hardware algorithm: how many of the next n instructions
can be executed, where n is the superscalar issue width

« superscalars can have data & structural hazards within
the n instructions

« advantages of in-order execution
« simpler implementation (]

« faster clock cycle
« fewer transistors

CSE378 Autumn 2002 8

In-order vs. Out-of-Order Execution

Out-of-order execution

CSE378

instructions are fetched in compiler-generated order
instructions complete in compiler-generated order

in between they may be executed out of their compiler-
generated order

instructions are by the hardware
¢ hardware decides in what order instructions can be
executed

« instructions behind a stalled instruction can pass it
advantages: better performance

 better at hiding latencies; less processor stalling; higher
throughput
« better utilization of functional units

Autumn 2002 9

Dynamically Scheduled Processors

Dynamically scheduled or out-or-order processors:

do not necessarily issue instructions in program (compiler-
generated) order

issue instructions as soon as their operands are available
« have been calculated in the ALU
* have been loaded from memory

ready instructions can issue before stalled instructions that are
waiting for their operands to be computed

when go around a load instruction that is stalled for a cache
miss:
e use that allow instruction issue to
continue while a miss is being satisfied
« the load-use instruction still stalls

when go around a branch instruction:

« the instructions that are issued from the predicted path are
issued speculatively, called

« when the branch is resolved, if the prediction was wrong,
are flushed from the pipeline

instructions fetched and () in order

CSE378 Autumn 2002 10

Dynamically Scheduled Processors

Instruction issue does necessarily go in program order
« the hardware decides which instructions should issue next

program order(in-order execution)

lw $3, 100($4) in execution, cache miss
add $2, \$3, $4 waits until the miss is satisfied
sub $5, $6, $7 waits for the add

execution ordei(out-of-order execution)

lw $3, 100($4) in execution, cache miss
sub $5, %6, $7 in execution
add $2, $3, $4 waits until the miss is satisfied --

flow dependence still upheld

CSE378 Autumn 2002 11

Superpipelining

Longer pipelines with shorter stages

* more work to do
example: dynamic instruction scheduling in an out-or-order
processor
¢ less work is done in each stage
examples:
data access in a high-performance processor: cache access
on one cycle & data returned on the next cycle
several cycles for decoding a CISC instruction set

Performance impact:

+ the increased instruction overlap can increase instruction
throughput

- additional stages can increase hazard penalties, usually the
branch misprediction penalty

CSE378 Autumn 2002 12

DEC Alpha 21164 Integer Unit Pipeline

Fetch & issue
: instruction fetch
dynamic branch prediction
: opcode decode
target address calculation
if predict taken, redirect the fetch
. decide which of the next 4 instructions can be issued
(includes an intra-cycle structural & data hazard check)
. inter-cycle load-data hazard check
register read
in-order instruction issue

Execute (2 pipelines, one for arithmetic & branches, one for loads &
stores)

. integer execution

effective address calculation
. branch execution

data cache access
. register write

CSE378 Autumn 2002 13

Designing a Pipeline-friendly Architecture

Architectural features that go well with pipelined implementations
¢ simple instructions
« all instructions take about the same number of stages
« work in all stages takes about the same amount of time
« fixed-length instructions
¢ can decode all instruction fields in parallel

« can fetch & decode multiple instructions in parallel
(superscalars)

« few instruction formats & fixed fields in most formats
« can decode all instruction fields in parallel

« can read operands, decode opcode & generate opcode-
specific control signals at the same time

* memory operands only in load/store instructions
« all instructions take about the same number of stages
« all stages take about the same amount of time

« can calculate the effective address in EX stage for a
shorter pipeline

What type of architecture does this describe?

CSE378 Autumn 2002 14

A Llttle Practice

add $5, $6, $7 D ,|:|,]

w $6, 0($5) D {)< D 7D>]

sub $7, 36, $8 D {< D ,D,]

and $7, $6, $5 D

Are there any dependences in this code?
What kind & where?
Do they cause any hazards in the pipeline?

R
Y
i

If so, where?
Can the hazards be eliminated? How?

How many cycles does it take to execute this code?

CSE378 Autumn 2002 15

Review

Techniques that eliminate hazards.
What types of hazards to they eliminate?

¢ duplicate hardware

¢ move the hardware

e flush

 hardware interlock (stall)

« forwarding

¢ branch prediction

 insert a nop

« code schedule an independent instruction

CSE378 Autumn 2002 16

