Control Hazards

Cause of the hazard:

 evaluation of the branch condition & calculation of the branch
target is not completed before the next instruction is fetched

« conflict as to which instruction to fetch next
e called a if the hazard can't be eliminated

Hardware solutions

« stall until the result of the condition & target are known
(unacceptable delay: no computer does this now)

« assume the branch is not taken
« redesign the pipeline
« dynamic branch prediction

CSE378 Autumn 2002 1

The Problem

condition is evaluated here

beq $1, $3, target target address is calculated here

these instructions
should not be
— executed if the

) E‘ branch is taken
nex
instruction B 4E}< D B 7[]

one after that B {}< D B H]

and a third E {< D E] <

target instruction B 4E}< D B D

CSE378 Autumn 2002 2

Just Stall

beq $1, $3, target

target
instruction

Even worse:

beq $1, $3, target

next
D sequential
/ instruction
T the bubble
CSE378 Autumn 2002 3

Assume a Branch Outcome

Technique:
« assume the branch will not be taken
« continue fetching sequential instructions
. them if the branch is taken after all
« fetch the target instruction

Performance savings
* no cost if the condition is false & branch isn’t taken
¢ 40% of conditional branches are not taken
¢ 3 cycle penalty if the branch is taken

Implementation (for flushing)

« change control signals for EX, MEM & WB stages
in IF/ID, ID/EX & EX/MEM set pipeline registers to 0
(similar to what we did for stalling after a load data hazard)

CSE378 Autumn 2002 4

Redesign the Pipeline

Purpose of the redesign:
« determine the branch outcome earlier
¢ reduce the branch cost of a taken branch

Hardware changes:
e adda to ID stage
L] will know where to branch in ID stage

« add combinational logic in ID stage to determine the outcome of
simple comparisons

« equal/not equal
e less than 0

[know whether to branch in ID stage
« do the more complicated comparisons in the ALU
[] know whether to branch in EX stage
« what architectural design principle is being used here?

How did the branch penalty change?

CSE378 Autumn 2002 5

Branch Prediction

Definition:
* Resolve a branch hazard by predicting which path will be taken
* Proceed under that assumption
« Have a mechanism to back out if wrong

Dynamic branch prediction:

¢ branch prediction implemented in hardware
(static branch prediction is done by the compiler)

« the prediction changes as program behavior changes

« algorithm based on branch history:
« predict the branch if branched the last time
 predict the branch if didn’t branch the last time

CSE378 Autumn 2002 6

Branch Prediction Buffer

Branch prediction buffer

» small memory indexed by the lower bits of the address of a
branch instruction

« contains a prediction bit/address
¢ do what the bit says to do
« if the prediction was wrong
 toggle the bit
« flush the pipeline

* accessed in IF stage

* What is the penalty if predict not taken & prediction is
correct?

* What is the penalty if predict taken & prediction is correct?
* What is the penalty if mispredict?

« branch prediction buffer predicts correctly most of the time

CSE378 Autumn 2002 7

Two-bit Prediction

A single prediction bit does not work well with loops

Two-bit branch prediction for loops
* must be wrong twice to toggle the bit

branch
taken | branch not taken i
< predict >%i predict)
taken branch taken taken

brancf\ branch
taken not taken

Y
Bredict branch not taken bredict
not taken/g—— |
branch taken

not taken
branch
not taken

* What pattern is bad for two-bit branch prediction?

CSE378 Autumn 2002 8

Control Hazards, in Summary

Goals of the solutions to eliminate control hazards:
« assume the common-case outcome

« determine the branch outcome & target address earlier so can
branch to the target earlier

« predict the branch direction

Control hazards can occur with all transfers of control:
e jumps
» procedure calls
e returns

« as well as taken conditional branches

CSE378 Autumn 2002 9

