
CSE378 Autumn 2002 1

Pipelining

Implementation technique

• overlaps execution of different instructions

• increases instruction throughput by executing several
instructions “in parallel”

• abstract model: an assembly line

CSE378 Autumn 2002 2

Pipelining

Divide the execution cycle into stages

• each stage takes one clock cycle

• cycle time limited by the longest stage
• want each stage to do equal work

• instructions advance down the pipeline together

• want all instructions to do the same amount of total work

In what ways has a RISC architecture been designed for pipelining?

CSE378 Autumn 2002 3

Pipelining

fetch d&r ex mem wb

fetch d&r ex mem wb

fetch ex mem wbd&r

fetch ex mem wbd&r

fetch ex mem wbd&r

fetch ex mem wbd&r

instruction i

instruction i+1

instr i

instr i+1

instr i+2

instr i+3

8 ns 8 ns

2 ns 2 ns 2 ns 2 ns 2 ns

CSE378 Autumn 2002 4

Pipeline Datapath

Stages are independent & isolated from each other

• information generated or retained at stage i that is needed in
stage i+1 must be stored in pipeline registers that separate
each stage

• otherwise the subsequent instruction will overwrite the
information

• examples of information stored in pipeline registers:

• the destination register number for an ALU result

• the source register number for the sw data
• offset of immediate value

• the updated PC

• control lines

All 5 stages are active at the same time

• cannot share resources among stages

• similar to the single-cycle datapath

• need pipeline registers to hold the results of one stage for the
next stage

• similar to the multiple-cycle datapath

CSE378 Autumn 2002 5

Pipelining Performance

Pipelining increases instruction throughput

• new instruction can start & complete each cycle
(once you fill the pipeline & if there are no pipeline stalls)

• therefore execution time of a program decreases

• increasing throughput is the most important performance effect

Pipelining slightly increases the latency of an individual instruction

• each instruction takes the maximum number of stages

• the longest stage sets the cycle time

• pipeline registers need to be written and read

• assumes:

• no pipeline stalls
• no pipeline overhead

T without pipeline instructions n cycles per instruction•=

T pipelining instructions n 1 cycles–+=

Speedup
T without pipeline

T pipelining
----------------------------------- # of pipe stages==

CSE378 Autumn 2002 6

Pipelining

fetch d&r ex mem wb

fetch d&r ex mem wb

fetch ex mem wbd&r
fetch ex mem wbd&r

fetch ex mem wbd&r
fetch ex mem wbd&r

fetch ex mem wbd&r
fetch ex mem wbd&r

fetch ex mem wbd&r
fetch ex mem wbd&r

fill the pipeline

new instruction
completes each cycle

t t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 ...

...

CSE378 Autumn 2002 7

Tracing an Instruction Through the Pipeline

Stage 1 : instruction fetch & PC increment

• PC is used to access memory
fetch instruction
put instruction into IF/ID (equivalent to IR)

• increment PC
put incremented PC into IF/ID

Main resources needed:

• instruction memory

• an ALU

IF/ID (64 bits) contains:

• instruction

• incremented PC

CSE378 Autumn 2002 8

Tracing an Instruction Through the Pipeline

Stage 2 : instruction decode & register read

• decode instruction & read source registers
put register values into ID/EX (equivalent to registers A & B)

• sign-extend immediate field & put into ID/EX

Main resources needed:

• register file

ID/EX (147 bits) contains:

• 2 register values

• sign-extended immediate

• rt, rd

• incremented PC

• control for the next 3 stages

• ALUop & func field (which ALU operation)
ALUsrc (which operand for the second ALU source)
RegDst (which destination register)

• Branch (in case this is a beq)
MemRead (read from memory)
MemWrite (write to memory)

• RegWrite (write the register file)
MemtoReg (where the value comes from)

CSE378 Autumn 2002 9

Tracing an Instruction Through the Pipeline

Stage 3 : execute

• do an ALU operation
put result & Zero into EX/MEM

• calculate the target address
put target into EX/MEM

Main resources needed:

• 2 ALUs

EX/MEM (139 bits) contains:

• ALU result

• target address

• store value

• destination register # (the one that has been chosen)

• Zero line

• incremented PC (for exceptions: later)

• control for the next 2 stages

• Branch (in case this is a beq)
MemRead (read from memory)
MemWrite (write to memory)

• RegWrite (write the register file)
MemtoReg (where the value comes from)

CSE378 Autumn 2002 10

Tracing an Instruction Through the Pipeline

Stage 4 : data memory access

• use effective address in EX/MEM to access memory
store data from EX/MEM if sw
put loaded value into MEM/WB if lw

• determine if branch should be taken

• R-type instructions do nothing

Main resources needed:

• data memory

MEM/WB (34 bits) contains:

• ALU or lw result

• control for the last stage

• RegWrite (write the register file)
MemtoReg (where the value comes from)

CSE378 Autumn 2002 11

Tracing an Instruction Through the Pipeline

Stage 5 : register write

• write loaded value or ALU result

• sw & beq instructions do nothing

Main resources needed:

• register file

No pipeline register

CSE378 Autumn 2002 12

More on Control Signals

No control signals needed to

• write PC

• read instruction memory

• write pipeline registers

Control signals are computed in ID & propagated to later stages in
the pipeline registers

CSE378 Autumn 2002 13

Clocking

Clock : free-running signal with a fixed cycle time

• typically divided into 2 clock phases

• clock signal high
• clock signal low

• edge-triggered clocking

• state changes occur on a clock edge

• write register file on a rising edge
• read register file on a falling edge

rising
edge

falling
edge

phaseclock period

CSE378 Autumn 2002 14

Register Reading & Writing

fetch ex mem wd&r

fetch ex mem wbd&r

fetch ex mem wbd&r

fetch ex mem wbr

instr i

instr i+1

instr i+2

instr i+3

2 ns 2 ns 2 ns 2 ns 2 ns

