Control Implementations

Control unit design:
* Hardwired control

« expressed as a finite state machine (state diagrams &
transitions between states)

« implemented with PLAs (programmable logic arrays) &
random logic

¢ good if the number of states is “small” (RISC architectures)
¢ Microprogrammed control
e expressed as a “micro” program

¢ implemented with read-only memory (ROM) of simple
instructions (instructions)

¢ provides structure & modularity when the number of states
is “large” (CISC architectures)

CSE378 Autumn 2002 1

Finite State Machine

Sequential & combinational logic function that consists of:
« set of inputs

 output function : maps current state (Moore machine) or
current state & inputs (Mealy machine) to a set of outputs

« next state function : maps current state & inputs to a new state

Finite state machine for CPU control:
« state = a step in the execution cycle
 input = opcode & func fields
 output = control signals that drive the datapath that cycle

CSE378 Autumn 2002 2

Microprogramming -- Basic ldea

Microprogramming : designing control that implements machine
(architecture) instructions in terms of simpler microinstructions

e microinstruction : specifies the control signals that must be
asserted in a given cycle

« fields in a microinstruction are represented to the human
symbolically (just like assembly language for machine
instructions)

» each machine instruction is emulated by a sequence of
microinstructions

* microcode or microprogram : set of all microinstructions that
control processor execution

Implemented by a simple auxiliary micro datapath & micro control
unit that generates signals for the main datapath

« “computer within a computer”
« micro datapath fetches microinstructions

* ROM address of the current instruction is in the microPC
« micro control unit sends signals to the main datapath

CSE378 Autumn 2002 3

Microinstruction Encoding

Multiple fields, multiple values per field
« width of field is determined by the number of values

Encoding the microinstruction:
« design so that each field specifies a non-overlapping set of
control signals

« signals that are not asserted together can share the same
field

¢ don’t put so many signals into the same field that it needs
complex interpretation to get the individual signal values that will
drive the macro datapath
« 2 different style extremes
. : 1 field for each value
* no decoding
« very wide microinstructions

« very highly encoded
¢ much narrower microinstructions

« acontrol signal can’t be set to more than one value in a
microinstruction

* microassembler makes sure that conflicting signals aren’t
generated in a microinstruction

CSE378 Autumn 2002 4

Microsequencing

Choosing the next microinstruction
(1) the next sequential microinstruction
¢ increment the microPC
(2) begin a new machine instruction

« branch to the microinstruction that controls instruction
fetching

(3) have multiple options that depend on some control unit input

« dispatch through a ROM of microinstruction target
addresses

* R2000 uses this for switching on the opcode

CSE378 Autumn 2002 5

Block Diagram

datapath
control

microcode [—= signals

microPC
adder,

address seleqt
logic -

— 11

dispatch special
ROM microinstruction

CSE378 Autumn 2002 6

Microcode for R2000

ALU |SRC| SRC | Register PCWrite| Sequen-
Label Memory .
Control| 1 2 control control | cing
add PC | 4 read PC ALU seq
add PC | extshft read dispat
1
add A extend dispatch
2
w2 read seq
ALU
write fetch
MDR
sw2 write fetch
ALU
rfmtl | func A B seq
code
write fetch
ALU
begl |subt A B ALU- |fetch
Out:
cond
jumpl jump fetch
address
CSE378 Autumn 2002 7
Pentium Pro

Implementation
¢ PLA (hardwired) for RISC-like instructions
* microcode for more complex instructions
¢ ~8000 microinstruction ROM
« microsubroutines (nanocode)

Execution times are similar to RISC machines

¢ most instructions are RISC-like

CSE378

Autumn 2002

A Comparison

Distinctions used to be clearer
¢ microinstructions in ROM faster than machine instructions in
RAM (memory)
» an argument for CISC also
* microcode could be expressed symbolically

* microcode was easier to express; hardwired random logic
was too complicated to specify for a CISC architecture

« microcode could be easily changed
« [J new instructions could be easily added
« [bugs could be easily fixed

« O specifying the architecture & building the
implementation could go on in parallel
« microcode was more modular

« different ROMs could be used to emulate older
architectures

¢ microsubroutines could be used

CSE378 Autumn 2002 9

A Comparison

Both have similar performance

* microcode ROM no longer has the big speed advantage over
macro instructions in RAM since instructions are cached

* PLA may be smaller & therefore somewhat faster than a ROM

Both have the same difficulty of design & debugging
« CAD tools allow hardwired control to be specified symbolically
« same difficulty in specifying & debugging control
« same difficulty in adding instructions to an existing ISA

« faster machines provide a more detailed simulation & therefore
fewer bugs

Could probably use multiple PLAs as easily as multiple ROMs to
allow several implementations of the same architecture on the
same machine
(good for backwards compatibility)

Still the case that:

¢ hardwired control used for simple, regular instructions
« microcode used for complex, variable-length instructions

CSE378 Autumn 2002 10

