Levels in Processor Design

Circuit design

 build gates (AND,OR, NAND, NOR, etc.), flip-flops, etc. from transistors

Logical design

• put gates together to form registers, adders, etc. (CSE370)

Register transfer level

- describes the execution of instructions by showing how information is transferred and manipulated between adders, registers, etc.
 - combinational: the output is a function of the input, e.g., an adder
 - · sequential: state is remembered, e.g., registers

Architectural description

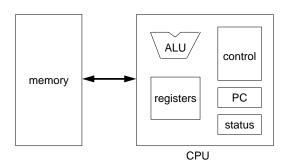
· ISA, software conventions

System description

• memory hierarchy, I/O, number of processors, etc.

CSE378 Autumn 2002

Execution Cycle


What happens when an instruction executes

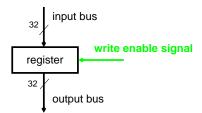
- (1) fetch
 - sent the PC to memory
 - transfer an instruction from memory to the CPU
 - increment the PC
- (2) decode & read the ALU sources
 - registers
 - · immediate from the instruction

(3) execute

- · an ALU operation
- effective address calculation
 - · address to memory
 - · memory access
 - · data to memory (if a store)
 - · data from memory (if a load)
- branch target calculation
 - condition check
 - change the PC
 - save the return address on a jal
- (4) store the result in a register
 - · from the ALU
 - · from memory

Processor Datapath & Control Unit

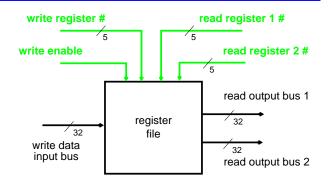
Datapath:


- combinational & sequential logic
- hardware that implements the operations: ALU, incrementer
- storage for the program (processor state): GPRs, PC, status
- wires & buses: data flow between the components

Control

- sends signals to the datapath elements
- specifies what operations to perform, what data to move, when to move it, where to move it

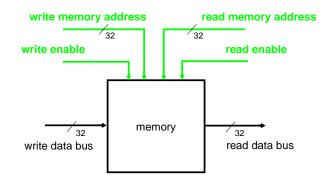
CSE378 Autumn 2002


Datapath Building Blocks: Sequential

Register

- holds 32 bits
- · can be read or written

Datapath Building Blocks: Sequential

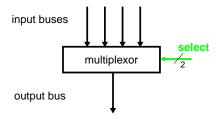


Register File

- · always reads
- writes controlled by the enable signal
- can both read and write in the same cycle
 - · write first, read second
- can read two register values in the same cycle

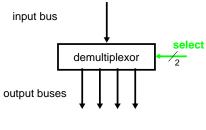
CSE378 Autumn 2002

Datapath Building Block: Sequential

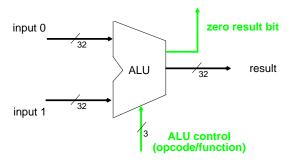

Memory

- can only read or write one location in a cycle
- both reads & writes controlled by an enable line

Datapath Building Block: Combinational


Multiplexor (MUX):

- · selects one of its inputs for output
- input selected depends on select signal


Demultiplexor (selector)

- routes the input to one of the outputs
- the output chosen depends select

CSE378 Autumn 2002

Datapath Building Block: Combinational

ALU

· Computes arithmetic & logical functions

Single-cycle Datapath

No hardware can be reused by the same instruction

(memory units not really on the CPU)

CSE378 Autumn 2002