
CSE378 Autumn 2002 1

Subroutines

Why we use subroutines

• more modular program (small routines, outside data passed in)
⇒ more readable
⇒ easier to debug

• code reuse ⇒ smaller code space

CSE378 Autumn 2002 2

Memory Usage

A software convention

stack segment:

• holds process-local storage managed in LIFO fashion

• automatically allocated by the operating system

• stack grows down (toward lower addresses) as data is put onto it

• stack pointer $sp (or $29) is automatically loaded to point to the
last allocated location on the stack

stack
segment

text
segment

data
segment

7fffffff hex

400000hex

10000000hex

Dynamic data
Static data

Reserved0hex

stack
pointer

Code

CSE378 Autumn 2002 3

Using the Stack

Stack operations:

• each requires 2 instructions

• one to adjust the stack pointer
• one to transfer the data onto/off the stack

• push :

subu $sp,$sp,4 # allocate a new word on the stack

sw $t0,0($sp) # push the contents of $t0

• pop :

lw $t0,0($sp) # pop the contents into $t0

addu $sp,$sp,4 # adjust the stack pointer

• the assembler recognizes a stack pointer operation & generates
addui

• more efficient to allocate all the space you’ll need at once

• often allocate & deallocate the same amount

CSE378 Autumn 2002 4

Using the Stack

Example

• allocate all the stack space you will need for a group of data

• the stack locations are “above” where the stack pointer is
pointing, so the displacements from $sp will be positive

saving values on the stack

sw $t1,8($sp)

sw $t0,4($sp)

sw $s0,0($sp)

subu $sp,$sp,12

restoring values from the stack
lw $t1,8($sp)
lw $t0,4($sp)
lw $s0,0($sp)
addu $sp,$sp,12

$sp
data

CSE378 Autumn 2002 5

$sp

contents of $t1

contents of $t0

contents of $s0

CSE378 Autumn 2002 6

Procedure Calling Convention

Protocol between the caller & the callee:

• who saves which registers

• how parameters are passed: in registers? on the stack? both?

• where the return address is located

Why have a calling convention?

• caller & callee can interact correctly & efficiently

• can have subroutines that are written in different languages &
compiled with different compilers

Convention implemented by a division of labor between the hardware
& software

• hardware:

• performs simple instructions

• has dedicated registers

• software:

• controls the sequence of instructions for calling & returning

• determines which register points to the stack
• the rules of the protocol

Each architecture has its own protocol(s)

CSE378 Autumn 2002 7

Why Have Two Classes of Registers?

Caller knows what registers it needs after the procedure call.

Callee knows what registers it is going to use.

Therefore divide the saving responsibilities to reduce register
spilling (storing registers in memory because you need to use
them for something else)

Caller-saved registers (t’s): not preserved across procedure calls

• caller saves them if it wants to use them after the procedure call

• if it doesn’t need them later, it doesn’t have to save them

• so a caller uses them for short-lived values

• callee knows it can use these registers without saving them

• savings: caller-saved registers only spilled if the caller uses
them after the procedure call

Callee-saved registers (s’s): preserved across procedure calls

• caller doesn’t save them even if they are used after the return

• a caller uses them for long-lived values

• if the callee needs to use them, it must save them first

• savings : callee-saved registers only spilled if the callee uses
them

CSE378 Autumn 2002 8

MIPS Procedure Calling Convention

Caller

• saves the “a” registers on the stack

• saves the “t” registers on the stack: $t0 - $t9

• passes the arguments in $a0 - $a3

• saves additional passed values on the stack

• executes jal which puts the return PC in $ra

Callee

• determines the size of the stack frame & changes $sp to point to
the end of the frame

• stack frame : a region of the stack that holds all the data for
a single procedure
(also called procedure call frame, activation record)

• subu $sp,$sp,frameSize

• puts its return address & frame pointer ($fp) on the stack

• saves the “s” registers on the stack: $s0 - $s7

• sets $fp to $sp + stack frame size - 4

• puts its local variables on the stack

• if the callee calls a procedure, it becomes a caller

Neither modifies the other’s portion of the stack

CSE378 Autumn 2002 9

Stack Frame

frame pointer ($fp or $30):

• points to the first word of a stack frame

• value never changes: stable offset base for locations within the
stack frame

• not always used

overflow argument space

caller-saved registers

return address &

callee-saved registers

$sp

$fp

caller

callee

 frame pointer

saved arguments

callee
becomes

caller

stack frame

caller-saved registers

overflow argument space

local variables

saved arguments

CSE378 Autumn 2002 10

Example Call Sequence

Assume:

• arguments are in $t0 & $t1

• want to save caller-saved registers $t6 & $t7

move $a0,$t0 # first argument

move $a1,$t3 # second argument

subu $sp,$sp,8 # adjust the stack pointer

sw $t6,4($sp) # save $t6 on the stack

sw $t7,0($sp) # save $t7 on the stack

jal target

The first thing the callee will do
(assuming it does not have to save any $s registers)

target: subu $sp,$sp,4 # adjust the stack pointer

sw $ra,0($sp) # save the return address

CSE378 Autumn 2002 11

MIPS Procedure Return Convention

Return convention:

• put the return values in $v0, $v1

• restore the “s” (caller-saved) registers

• restores $fp & $ra

• pop the activation record by adding its size to $sp

• return to the caller by jr $ra

CSE378 Autumn 2002 12

Example Return Sequence

Before returning, the callee will put results in $v0 & $v1 if needed &
then:

lw $ra,0($sp) # load the return address into $ra

addu $sp,$sp,4 # adjust the stack pointer

jr $ra # return

The caller will restore $t6 & $t7 and adjust the stack

lw $t6,4($sp) # restore $t6

lw $t7,0($sp) # restore $t7

addu $sp,$sp,8 # adjust the stack pointer

CSE378 Autumn 2002 13

Use of Registers & the Stack

Registers are used for:

• passing a small number of arguments (up to 4, $a0 - $a3)

• passing the return address to the callee ($ra)

• locating the beginning of the stack frame ($fp)

• returning values to a caller ($v0, $v1)

• keeping track of the top of the stack ($sp)

• returning function values ($v0, $v1)

Stack is used for:

• passing parameters if more than 4

• saving the caller’s register parameters (a’s)
(might be used by the caller after the procedure returns)

• saving the caller’s registers that are going to be used by the
caller after the procedure returns ($t’s)

• local data for the callee

• the return address of the caller
(in case the callee becomes a caller & calls a procedure)

• the frame pointer (same reason)

• any callee-saved registers the callee is going to use ($s’s)

