
CSE378 Autumn 2002 1

Control Instructions

Used if you do not execute the next PC value.

Transfer control to another part of the instruction space.

Two groups of instructions:

• branches

• conditional transfers of control

• the target address is close to the current PC location
• branch distance from the incremented PC value fits

into the immediate field

• for example: loops, if statements

• jumps

• unconditional transfers of control
• the target address is far away from the current PC location

• for example: subroutine calls

CSE378 Autumn 2002 2

MIPS Branch Instructions

Branch instructions: conditional transfer of control

• Compare on:

• equality or inequality of two registers

Opcode rs, rt, target

rs, rt: the registers to be compared

target: the branch target

• >, <, ≥, ≤ of a register & 0

Opcode rs, target

rs: the register to be compared with an implicit 0

target: the branch target

• Branch to a target that is a signed displacement (expressed in
number of instructions) from the instruction following the
branch

Some examples:

beq $t0, $t1, Target # branch to Target if $t0 == $t1

bgez $t0, Target # branch to Target if $t0 ≥ 0

CSE378 Autumn 2002 3

MIPS Branch Instructions

beq, bne, bgtz, bltz, bgez, blez
are the only conditional branch opcodes

Use slt (set on less then) for >, <, ≥, ≤ comparisons between two
registers

slt rd, rs, rt # if rs < rt, rd = 1; else rt = 0

An example:

• branch if the first register operand is less than the second

slt $t0, $t1, $t2 # $t0 = 1 if $t1 < $t2; otherwise $t0 = 0

bne $t0, $0, L1 # branch to L1 if $t0 = 1

CSE378 Autumn 2002 4

MIPS Pseudoinstructions

Pseudoinstruction :

• an instruction provided by the assembler but not implemented in
the hardware

• used as a shortcut by assembly language programmers

• blt $t1, $t2, L1 # pseudoinstruction for branch to L1
if $t1 < $t2

assembler expands to: slt $at , $t1, $t2

bne $at , $0, L1

(note the use of $at ($1) by the assembler)

also bgt, bge, ble

CSE378 Autumn 2002 5

Branch Distance

Extending the displacement of a branch target address

• offset is a signed 16-bit offset

• represents a number of instructions , not bytes

• added to the incremented PC

• target address is a word address, not a byte address

• bottom 2 bits are zero

• in assembly language, use a symbolic target address

Why can you do this?

What does it buy you?

CSE378 Autumn 2002 6

Branch Distance

Branch offset is a decent size

• 16-bit offset

• added to the incremented PC

• represents a word address

But what if it is too small to reach the branch target?

• assembler inserts an unconditional jump

• the conditional branch branches to the original false path code
(condition evaluated to false) or falls through to the jump

Example:

beq $s0, $s1, L1

changes to:

bne $s0, $s1, L2

j L1

L2: the false path: the original fall through code

CSE378 Autumn 2002 7

I-type Format for Branches

I-type format used for conditional branches

• opcode = control instruction

• rs, rt = source operands

• immed = address offset in words, ± 215

• hardware sign-extends when uses (replicate msb)

• target address = PC + (immed*4)

immedopcode rs rt

31 26 20 16

25 21 15 0

5 16 17 (Exit - PC+4) / 4

bne $s0, $s1, Exit

CSE378 Autumn 2002 8

MIPS Jump Instructions

Jump instructions: unconditional transfer of control

j target # jump
go to the specified target address

jr rs # jump register
go to the address stored in rs
(called an indirect jump)

jal target # jump and link
go to the target address; save PC+4 in $ra

jalr rs, rd # jump and link register
go to the address stored in rs; rd = PC+4
default rd is $ra

Examples:

jal procedureAddress calls a procedure

jr $ra (or jr $31) returns from a procedure

jr $t0 can implement a case statement

• where the target addresses for the different cases are in a
table (jump address table)

• $t0 contains one such entry

CSE378 Autumn 2002 9

J-type Format for Jumps

J-type format used for unconditional jumps

• opcode = data transfer instruction

• address = partial address in words

• bottom 2 bits are zero (jumping to a word/instruction
boundary)

• top 4 bits come from the PC

addressopcode

31 2625 0

2 10000

j 10000

CSE378 Autumn 2002 10

If/then/else Example

The C version

if (i == j)

f = g + h;

else f = g - h;

An assembly language version:

i in $s3, j in $s4

f in $s0, g in $s1, h in $s2

bne $s3,$s4,Else # go to Else if i not = j

add $s0,$s1,$s2 # f = g + h

j Exit # jump out of the if

Else: sub $s0,$s1,$s2 # f = g - h

Exit:

