
244

CSE378 WINTER, 2001

Virtual Memory

245

CSE378 WINTER, 2001

Evolution
• Initially, each program ran alone on the machine, using all of the

available memory.

• It was linked and loaded starting at a known address (like 0).

• All memory accesses used physical addresses.

• Problem: This single-program model doesn’t utilize resources
well. When a program blocks for I/O, the CPU sits idle for a long
time. Why not run another program?

• Multiprogramming: keep several programs loaded into memory,
switching between them as necessary. Problems:

• How do we protect one program from another?

• How does one program get more memory?

• When can a program be loaded into memory?

246

CSE378 WINTER, 2001

Solution: Base & Length Registers
• Compile/link programs so that addresses start at zero.

• Place programs into contiguous free blocks of memory and
translate the virtual addresses they generate:

Program A

Program B

Program C

Base register

Length register

When B is running:

Physical Address = (Base register) + virtual address

If (physical address) > (base + length) then
 raise exception

247

CSE378 WINTER, 2001

Relocation
• Base and length registers support program relocation.

• A program thinks it’s the only program in memory, starting at
address zero.

• All addresses it issues are relocated through the base register.

• The length register is used to provide protection.

• The main problem is fragmentation:

• As programs come and go, memory gets chopped up.

• Eventually, we may not have a contiguous block large enough to
run the program.

• The program may not be able to load even though the total free
space is enough...

248

CSE378 WINTER, 2001

Virtual memory: Paging
• Basic idea of paging is to divide the virtual address space into

equal sized chunks: pages.

• Divide physical memory into equal sized chunks called page
frames.

• Provide relocation information for every page of a program, so
that any virtual page can be stored in any physical page frame.

• Thinking in terms of memory hierarchy, physical memory acts like
a fully associative cache between the processor and the disk,
pages are blocks (lines).

• Because disk transfers are expensive:

• pages are large, to amortize the cost of transfer

• a write-back policy is used, so changes are only written to disk
when a page is replaced

249

CSE378 WINTER, 2001

Paging in Pictures
• Note: N can be larger than M; programs A and B share frame 3;

virtual page 2 (Program A) is not mapped.

virtual page 0

virtual page 1

virtual page 2

...

...

virtual page N

virtual page 0

virtual page 1

virtual page 2

page frame 0

page frame 1

page frame 2

page frame 3

...

...

...

...

...

...

...

page frame M

Program A Virtual Address Space

Program B Virtual Address Space

Physical Memory

250

CSE378 WINTER, 2001

Page Tables
• Paging allows a virtual address space larger than the physical

address space.

• Each program has a data structure called a page table, that
provides relocation information for each of that program’s pages.

• Each page table entry (PTE) indicates:

• where the virtual page is stored (which physical frame)

• valid bit: is the page in memory? If the valid bit is zero, an
attempt to access the page results in a page fault.

• dirty bit: has the page been modified?

• protection bits: used to control read/write/execute access

• reference bits: used to implement/approximate LRU replacement

• A program can run without having all of it’s pages in memory:
some pages can reside on the disk.

251

CSE378 WINTER, 2001

Page Tables in Pictures

virtual page 0
virtual page 1
virtual page 2
...
...
virtual page N

virtual page 0
virtual page 1
virtual page 2

page frame 0
page frame 1
page frame 2
page frame 3
...
...
...
...
...
...
...
page frame M

Program A V.A. Space

Program B

Physical Memory
1
1
0
0
0
1

1
1
1

B’s page table

A’s page table

valid bits

frame number

252

CSE378 WINTER, 2001

Translating a Virtual Address
• Page size is always a power of 2: we can view an address as

consisting of a virtual page number, and an offset.

• Example, page size = 4KB, or 2^12 bytes

Virtual page number offset

31 12 11 0
Virtual Address:

1

Phys. frame number offset

31 12 11 0

Page Table
The page table maps
virtual page numbers to
physical frame numbers.

253

CSE378 WINTER, 2001

Processes
• A process (a program in execution) is defined by:

• Registers: PC, a stack pointer, general registers

• Page tables: which point to the data (program text, stack, etc)

• bookeeping info: open files, limits, time used, process ID, etc.

• On a uniprocessor, only one process runs at a time. Switching
from one process to another is called a context switch.

• Performing a switch from A to B requires interrupting A, saving the
A’s state (registers, PC), loading B’s state, and jumping to the new
PC.

• In a simple model, processes are in one of three states:

• Running - in control of the CPU

• Ready - waiting for the CPU

• Waiting - waiting for some event (such as I/O completion)

• CSE451

254

CSE378 WINTER, 2001

Protection and Sharing
• Address translation can be used to protect processes from each

other and to allow processes to share date.

• Different processes have their own page tables which generally
point to different locations in memory, providing protection -- a
program cannot generate a physical address that belongs to
another process.

• If two PTEs from different processes point to the same physical
location in memory, then those processes share that page.

• Also read/write bits associated with PTEs can implement finer-
grained access.

• To make this work, programs must be prohibited from modifying
their own page tables!

255

CSE378 WINTER, 2001

Speeding Translation: TLBs
• To translate a virtual address into a physical address, we have to

do a lookup in the page table.

• Translation costs (at least) one additional memory access.

• Solution: build special hardware (Translation Lookaside Buffer) to
“cache” PTEs.

Virtual page number offset

31 12 11 0
Virtual Address:

Tag (VPN) Data (PFN)D V Prot

MIPS TLBs are
fully associative and
small (64 entries)

256

CSE378 WINTER, 2001

Memory Access in Pictures

Virtual Address

TLB Lookup

hit

miss

Access
Cache

hit

Read data from
cache (slightly

Look up PTE.

valid

Reload TLB

invalid

Handle page
fault. Restart
instruction.

different on write)

miss

Fetch data from
main memory.
(slightly different
on write)

257

CSE378 WINTER, 2001

Memory Access
• On each reference, hardware searches TLB for translation info.

• On a TLB hit, the physical address is passed to the cache.

• On a TLB miss, either the hardware or software searches page
table (in MIPS this is in software).

• If we a valid PTE, it reloads the TLB and continues translation.

• If we find an invalid PTE, this means a page fault has occurred
(see below for how to deal with this).

• TLB miss resolution is fast (10-30 cycles), and is often
accomplished in software (e.g. MIPS).

• Handling a page fault takes much longer (because disk access is
needed), so the process is usually switched out.

258

CSE378 WINTER, 2001

TLB Organization
• TLBs are small caches holding PTEs

• MIPS organization: fully associative, write-allocate, write-back,
random replacement. MIPS TLB holds 64 entries.

• What happens on a context switch? The PTEs in the TLB are no
longer valid for the new process. Two options:

• Flush the TLB on each context switch (can be expensive if there
is a lot of switching)

• Append a process ID (PID) to the virtual address. This way, the
TLB can hold mappings for more than one process.

259

CSE378 WINTER, 2001

Page Faults
• Pages either live in memory (at the frame given by the PTE in the

page table) or on disk.

• The OS maintains this information in the page table and other per-
process data structures.

• When a program attempts to access a location that is not in
memory (PTE valid bit unset), we have a page fault.

• Resolving the fault takes 100,000s of cycles (disk IO), so the
process which faulted must be interrupted and another process
switched in: context switch.

• In order to restart the program later on, the process state must be
saved, including all registers (and the PC) and the page tables.

260

CSE378 WINTER, 2001

Handling a Page Fault
• The page fault handler (part of the OS) will:

• Find or free a physical frame.

• There may be free frames in a “free list;” if so, grab one.

• If there are no free frames, choose one to be replaced. If the
frame is dirty, initiate a write back to disk, and invalidate the
associated PTE.

• Find out where the faulting page resides on disk.

• Initiate a read from disk to the selected frame (in memory).

• Now switch in a new process, because the disk transfers will take
a while.

• When the disk transfers complete, modify the PTE to make it
valid, and restart the faulting program.

261

CSE378 WINTER, 2001

Virtual memory summary
• VM is just another level of the memory hierarchy.

• pages = blocks; page faults = cache misses.

• Misses are very expensive. Keep miss rate low with:

• Large blocks

• Fully associative mapping (need page tables)

• Careful replacement (see CSE451)

• Writes are expensive. Use write-back scheme.

• VM provides an address space for each process. Provides
protection, and the illusion of very large address spaces (larger
than physical memory). Can also be used to implement sharing
between processes.

• Translating each memory reference through the page table is
expensive, so we use a TLB, which is a cache of PTEs.

262

CSE378 WINTER, 2001

Memory hierarchy summary:

Feature Caches Paged Memory TLB

Total size in bytes 4KB - 4MB 8MB - 1GB 100s - 1KB

Block size in
bytes

4-256 4KB - 16KB 4-16

Miss penalty
(cycles)

10-100 100,000 - 1,000,000 10-50

Miss rates 1-10% 0.00001% - 0.0001% 0.01% - 1%

Mapping direct-mapped or

set associative

fully associative fully associative
or set associative

Write policy WT/WB WB WB

Who handles
miss?

Hardware OS (page fault)

context switch

OS or HW

no context switch

263

CSE378 WINTER, 2001

Concepts
• Address translation: this adds a level of indirection, giving the OS

control over laying out programs in memory.

• Address translation is used to implement VM, sharing, protection

• Process: a process is definied by a page table, a set of registers
(including the PC), and some pages (which hold program text, the
stack, dynamic data, etc).

• Caches: we’ve seen three important applications: TLB, caches,
virtual memory

• Caches work because programs exhibit spatial and temporal
locality.

• Block size, associativity, cache size, write policy, replacement
policy, and the speed of the next level of hierarchy impact the
performance of a cache by effecting miss rate, miss penalty,
access time of our cache

