
76

CSE378 WINTER, 2001

Supporting Procedure Call

77

CSE378 WINTER, 2001

Supporting Procedure Call
• Procedures (or functions) are a crucial program structuring

mechanism.

• To support procedures we need to define a calling convention: a
sequence of steps followed by the calling procedure and the
called procedure to assure correct passage of parameters,
results, and control flow...

• Each machine (compiler, really) uses its own calling convention

• The convention is controlled by software and/or hardware

• In RISC machines, the hardware performs only simple
instructions, so most of the onus is on the programmer/compiler to
issue the proper sequence of instructions to assure correct
implementation of procedure calls

78

CSE378 WINTER, 2001

Program Stack
• Each executing program (process) has a stack

• A stack is a dynamic data structure that is accessed in a LIFO
manner (you knew this already)

• The program stack is automatically allocated by the OS when the
program starts up

• The register $sp (register 29 on the MIPS) is automatically loaded
to point to the first empty slot on the top of the stack

• By convention, the stack grows towards lower memory addresses

• To allocate space on the stack, decrement $sp

• To free old stack space, increment $sp

79

CSE378 WINTER, 2001

MIPS Program and Memory Layout
• By MIPS convention, memory is laid out as follows:

• Note that the user only gets half of the address space.

0x00000000

0x00400000

0x10000000

reserved

$sp

$gp

text (program)

static data

dynamic data

stack 0x7FFFFFFF

4 MB

max 252 MB

max 1792 MB

80

CSE378 WINTER, 2001

Procedure Stack Frame
• A stack frame is a block of memory on the stack that is used for:

• Passing arguments

• Saving registers

• Space for local variables

Argument
build area

Saved regs
($ra, etc.)

Local vars

$sp->

low memory

high memory

Callee’s stack frame

Caller’s
frame...

Used for
passing additional
args...

81

CSE378 WINTER, 2001

Multiple calls
• Assume your main program calls procedure A, which in turn calls

procedure B. During the execution of B, the stack will look like:

$sp->

low memory

high memory

Proc. B
saved regs
and locals

Proc. A
saved regs
and locals

main
saved regs
and locals

82

CSE378 WINTER, 2001

Procedure Call Sequence
• Definitions: callee (the procedure that is called); caller (the

procedure that does the calling). Note that a given procedure can
be, at different times, both caller and callee...

• Here is a generic sequence of events surrounding a procedure
call. What needs to be done during the calling sequence? (And
who does it?)

1. Caller must pass the return address (where to continue execution
after the call) to the callee

2. Caller must pass parameters to callee

3. Caller must save registers that the callee might want to use

4. Jump to the first instruction of the callee

5. Callee must allocate space for local variables, and possibly save
registers

6. Callee executes...

7. Callee has to restore registers (possibly) and return to caller

8. Caller continues....

83

CSE378 WINTER, 2001

Mechanisms
• How do we save information? Pass information? Make space for

locals? Again, this is defined mainly by convention:

• In the MIPS convention the registers are used for:
1. passing the return address (by jal target, which places the address of
the next instruction into $ra)

2. passing a small number of parameters (up to 4, in $a0-$a3)

3. keeping track of the stack pointer ($sp)

4. returning function values (in $v0-$v1)

• The stack is used for:
1. save registers that the callee might use

2. save information about the caller (its $ra, for instance: why?)

3. pass additional parameters

4. allocate space for a procedures local variables

84

CSE378 WINTER, 2001

Register conventions
• The following conventions dictate the use of registers during

procedure call:

Register Name Function

$2-3

$4-7

$8-15

$16-23

$24-25

$28

$29

$30

$31

$v0-v1

$a0-a3

$t0-t7

$s0-s7

$t8-t9

$gp

$sp

$fp

$ra

return function value

for passing the first 4 parameters; caller-saved (volatile)

caller-saved temporaries (volatile)

callee-saved temporaries

caller-saved temporaries (volatile)

pointer to global static memory (don’t mess)

stack pointer

frame pointer (used by some compilers)

return address (callee-saved)

85

CSE378 WINTER, 2001

Who saves/restores the registers?
• Caller saves. The caller saves any registers that it wants

preserved before making the call, and restores them afterwards.

• Callee saves. The callee saves any registers it intends to use, and
restores them before it returns.

• MIPS takes a hybrid approach, by classifying some registers as
caller-saved and some as callee-saved.

• Caller-saved registers ($t0-$t9) are those that the caller must
save/restore (if they need the value after the call). Sometimes
these registers are described as volatile, because the callee is
free to change them without saving/restoring them.

• Callee-saved registers ($s0-$s7, $ra) are those that the callee
must save/restore if they want to change them.

• Compilers are good at deciding how to allocate the registers to
optimize their use, e.g. by placing short-lived values into caller-
saved registers, and long-lived values into callee saved registers.

86

CSE378 WINTER, 2001

A Convention of My Invention
• The trouble with conventions is that no one agrees on them. For

instance:
1. The text presents two different procedure call conventions, both of
which are confusing.

2. The MIPS manual presents another, which is also confusing.

3. The cc compiler uses another (close to the one in the MIPS manual)

4. The gcc compiler uses yet another...

• At a minimum, our convention should agree (in principle) with the
ones used by typical compilers. (Ours almost does...)

• We’re concerned primarily with 4 points in program execution:
1. The entry to a called procedure.

2. The exit from a called procedure.

3. Just before calling a procedure.

4. Just after the return from a procedure call.

87

CSE378 WINTER, 2001

Procedure Entry
• Allocate stack space by:

subu $sp, $sp, framesize

• Framesize is calculated by determining how many bytes are
required for

1. Local variables

2. Saved registers: usually at least $ra (if we intend to make a call) +
space for the callee save registers we intend to use.

3. Procedure call arguments: If we intend to make a call with more than
4 parameters, we’ll need to allocate extra words at the top of our
stack frame.

• Save callee-saved registers. A callee must save $s0-$s7 before
altering them, since the caller expects to find them unchanged
after the call. Register $ra need only be saved if the callee
intends to make further calls.

• It is a good habit to only grow the stack on procedure entry, and
not to mess with it again until procedure exit.

88

CSE378 WINTER, 2001

Procedure exit
• Return values. If the procedure is a value returning function, the

value should be placed in $v0.

• Restore all callee-saved ($s0-$s7) registers.

• Restore $ra, if necessary.

• Pop the stack frame by adding framesize to $sp:
addu $sp, $sp, framesize

• Return to the caller by jumping to the address in $ra:
jr $ra

89

CSE378 WINTER, 2001

Prior to a Call
• Pass arguments. Place the first 4 arguments into $a0-$a3. The

remaining arguments are placed on the stack at offset($sp). The
offset is 0 for the 5th argument, 4 for the 6th argument, etc. This
works because we allocated a large enough argument build area
on procedure entry (see above).

• Save the caller-saved registers. The callee can modify $a0-$a3
and $t0-$t9 with impunity, so if the caller expects to use one of
these registers after the call, it must save them.

• Jump to the caller by executing the jal instruction, which will
deposit the return address into $ra.

90

CSE378 WINTER, 2001

After a call
• Restore any caller-saved registers you saved before the call.

• Often there will be nothing to do here, because we (or the
compiler) have been clever and have used the callee saved
registers for long-lived values, and the caller-saved registers for
short-lived values.

91

CSE378 WINTER, 2001

Example: Recursive Factorial
int factorial (int n) {

 if (n==0)

 return 1;

 else

return n * factorial(n-1);

}

• How large does the stack frame for factorial need to be?

92

CSE378 WINTER, 2001

Assembly Version
factorial:

subu $sp, $sp, 8 # create stack frame

sw $ra, 0($sp) # save ra

beq $a0, $0, base # base case?

sw $a0, 4($sp) # RECURSIVE CASE:

addi $a0, $a0, -1 # save $a0 on stack,

jal factorial # make recursive call

lw $t0, 4($sp) # now restore $a0...

mul $v0, $v0, $t0 # ...and multiply

j ret # drop to bottom

base: li $v0, 1 # BASE CASE, return 1

ret: lw $ra, 0($sp) # procedure exit

addu $sp, $sp, 8 # restore $ra, $sp

jr $ra # return to caller

93

CSE378 WINTER, 2001

Larger Example
int doubleIt (int x) {

 return 2*x;

}

int

sumAndDouble (int a, int b, int c, int d, int e, int f) {

 int temp;

 temp = a+b+c+d+e+f;

 temp = doubleIt(temp);

 return temp

}

int main () {

 int x, f[6];

 x = sumAndDouble(f[0], f[1], f[2], f[3], f[4], f[5]);

 printInt(foo);

}

