
148

CSE378 WINTER, 2001

Pipelining

149

CSE378 WINTER, 2001

Drawbacks of the Single Cycle Imp
• A single cycle machine has disadvantages such as: All

instructions take the same time (CPI = 1), but some instructions
are shorter than others:

• ADD uses Instruction Memory, Register File, ALU, Register File

• LW uses Instruction Memory, Register File, ALU, Data Memory,
and Register file again...

• The cycle time of the machine is the time needed to execute the
“longest” instruction.

• Note also that we’re underutilizing functional units (the instruction
memory, register file, and ALU sit idle while data memory is being
read/written)

• We are violating our principle -- make the common case fast --
we’re making the common case take as long as the most
uncommon case...

150

CSE378 WINTER, 2001

Thought experiment
• Suppose we could design a machine whose cycle time varied, so

that it was just long enough for each kind of instruction.

• What would our performance improvement be over the single
cycle machine, given these numbers:

Instruction
Type IMEM Reg

Read ALU DMEM Reg
Write Total

Load 2 1 2 2 1 8

Store 2 1 2 2 - 7

R-type 2 1 2 - 1 6

Branch 2 1 2 - - 5

151

CSE378 WINTER, 2001

Thought Experiment 2
• GCC instruction mix: 22% loads, 11% stores, 49% R-format, 18%

branches

• Single-cycle cycle time = ??

• Vari-cycle cycle time = ??

• What’s the speedup?

• Now suppose we add floating point, and that that our FP ALU
takes 8 ns for add/sub and 16 ns for mult/div.

• What would be the new cycle time of the single cycle machine?

• How much faster would the variable clock machine be, given this
mix: 25% loads, 15% stores, 30% R-format, 10% branches,
10% FP mult, 10 % FP add

• Vari-cycle time = .26*40 + .14*35 + .31*30 + .10*25 + .09*80 +
.10*40 = 38ns

• What’s the speedup?

152

CSE378 WINTER, 2001

Improving Performance
• Of course, it’s really impractical to build a variable clock machine.

• As the ISA gets more complex, the single cycle shortcomings
become more serious, so what do we do? Two approaches:

• Multiple cycle machine (section 5.4): This is a way to
approximate the effect of a variable clock, by letting instructions
take different numbers of cycles to complete. For instance,
loads might take 5 cycles because they use all 5 functional
units, but adds might only take 4 cycles...

• Pipelining: Observe that we’re underutilizing our functional units
-- e.g the ALU sits idle while we access data memory. Find a
way to work on several instructions at the same time.

• CISC ISAs pretty much require a multi-cycle implementation.
Why?

• RISC ISAs are amenable to pipelining.

153

CSE378 WINTER, 2001

Pipelining Defined
• Basic metaphor is the assembly line:

• Split a job A into n sequential subjobs (A1, A2, ..., An) with each
Ai taking approximately the same time.

• Each subjob is processed by a different substation (resource), or
equivalently, passes through a series of stages.

• When subjob A1 moves from stage 1 to stage 2, subjob A2
enters stage 1, and so on.

• Laundry example:

• Suppose doing a load of laundry, from beginning to end, takes
1.5 hours. How long does it take to do 3 loads of laundry?

• If we split this job into 3 subjobs: washing (30 minutes), drying
(30 minutes), folding+ironing (30 minutes).

• With a pipeline, how long does each load of laundry take?

• How long do 3 loads of laundry take? 10 loads? N loads?

154

CSE378 WINTER, 2001

Pipeline Performance
• The execution time for a single job can be longer, since each

substage takes the same amount of time -- the time for the
longest of any stages. Eg. it might not take a full 30 minutes to
fold and iron clothes...

• However, throughput is enhanced because a new job can start at
every stage time (and one job completes at every stage time).

• Pipelining enchances performance by increasing throughput of
jobs, not by decreasing the amount of time each job takes.

• In the best case, throughput increases by a factor of n, if there are
n stages. This is optimistic, because:

• Execution time of a job by itself could be less than n stage times

• We are assuming the pipeline can be kept full all of the time.

155

CSE378 WINTER, 2001

Pipeline Implementation
• The trick is to break the one long cycle into a sequence of smaller,

hopefully equally-sized tasks. Traditionally, the cycle is broken
into these 5 subjobs (pipe stages):

• IF: Instruction Fetch -- get the next instruction

• ID: Instruction Decode -- decode the instruction and read the
registers

• EX: ALU Execution -- utilize the ALU

• MEM: Memory Access -- read/write memory

• WB: Write Back -- write results to the register file

• On each machine cycle, each pipe stage does its small piece of
work on the instruction that is currently inside of it. Each
instruction now takes 5 cycles to complete.

156

CSE378 WINTER, 2001

The 5 Stages

Registers

Read
reg 1

reg 2

Write
reg
Write
data

Read
data 1

Read
data 2

Write
control

ALU

ALU
operation

Read

16 32Sign
Ext.

Read
address

Write
address

Write
data

Read
data

Write
control

Read
control

m
u
x

Memory

m
u
x

Instruction

Read
addressPC

Adder

Memory

4

Instruction

Adder
Shift
Left
 2

m
u
x

Instruction Fetch Instruction decode/
register read

Execute/
address calculation

Memory
access

Write
Back

157

CSE378 WINTER, 2001

Block diagram of pipeline

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

SEQUENTIAL EXECUTION. TIME

PIPELINED EXECUTION. TIME

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

instr i

instr i+1

instr i+2

instr i+3

instr i+4

instr i

instr i+1

158

CSE378 WINTER, 2001

Why it’s not (quite) so simple:
• We need to remember information about each instruction in the

pipeline. This information has to flow from stage to stage. We
accomplish this with pipeline registers.

• We need to deal with dependencies between instructions:

• Data dependencies

• Control dependencies

• We’ll ignore dependencies between instructions for now.

159

CSE378 WINTER, 2001

Adding Pipeline Registers:

• Note the 4 new registers which maintain state between stages.

Read
reg 1

reg 2

Write
reg
Write
data

Read
1

Read
2

ALU
Read

16 32Sign
Ext.

Read
address

Write
address

Write
data

Read
data

m
u
x

Memory

m
u
xInstr.

Read
addressP

Add

Memory

4
Add

Shift
Left
 2

m
u
x

C

ID/EX EX/MEM MEM/WBIF/ID

160

CSE378 WINTER, 2001

Example
• Trace the execution of this 3 instruction sequence:

lw $10, 16($1)

sub $11, $2, $3

sw $12, 16($4)

161

CSE378 WINTER, 2001

Instruction Fetch
• We’ll next describe the operation of the pipeline in some detail,

using pseudocode.

• Instruction Fetch and Decode is the same for all instructions:

• Instruction Fetch Stage. The IF/ID register needs to hold 2 pieces
of information:

IF/ID.IR <- IMemory[PC]

if (EX/MEM.ALUResult == 0)

 PC <- EX/MEM.TargetPC

else

 PC <- PC + 4

IF/ID.nPC <- PC

162

CSE378 WINTER, 2001

Instruction Decode
• Instruction Decode Stage. The ID/EX register needs to hold 6

pieces of information. Let A be input 1 of the ALU and B be input
2.

ID/EX.nPC <- IF/ID.nPC

ID/EX.A <- Reg[IF/ID.IR[25:21]] (i.e. read rs)

ID/EX.B <- Reg[IF/ID/IR[20:16]] (i.e. read rt)

ID/EX.Imm <- sign-extend(IF/ID.IR[15:0])

ID/EX.rd <- IF/ID.IR[15:11]

ID/EX.rt <- IF/ID.IR[20:16]

• Note that we start computing immediate, even though we might
not need it, and it might be “garbage”

163

CSE378 WINTER, 2001

ALU Execution
• ALU Execution Stage either computes the memory address for

load/stores, the value for arithmetic instructions, or whether a
branch is being taken.

• The EX/MEM register needs to hold 4 pieces of information:

EX/MEM.B <- ID/EX.B

EX/MEM.WriteReg <- ID/EX.rd (for R-type)

 or ID/EX.rt (for Load)

EX/MEM.TargetPC <- (4*ID/EX.Imm) + ID/EX.nPC

EX/MEM.ALUResult <- “ALU Result”

ALU Result is either

ID/EX.A + ID/EX.Imm (for lw, sw)

ID/EX.A op ID/EX.B (for R-type)

ID/EX.A - ID/EX.B (for beq)

164

CSE378 WINTER, 2001

Memory Access and WriteBack
• Memory Access Stage. The MEM/WB register needs to hold 3

pieces of information:
MEM/WB.MemData <- DMemory[EX/MEM.ALUResult]

MEM/WB.ALUResult <- EX/MEM.ALUResult

MEM/WB.WriteReg <- EX/MEM.WriteReg

DMemory[ALUResult] <- EX/MEM.B (for stores)

• Write Back Stage. All we need to do here is write back the results
(either from an ALU op or memory load) to the destination
register:

if ins was Load

 Reg[MEM/WB.WriteReg] <- MEM/WB.MemData

else if ins was R-type

 Reg[MEM/WB.WriteReg] <- MEM/WB.ALUResult

165

CSE378 WINTER, 2001

Summary of Simple Pipeline
• In stages 1 and 2 (IF and ID) the information to be kept is the

same for all instructions.

• But the pipeline registers must accomodate the “maximum”
amount of information that we might need to maintain.

• For example, if we have a store, the contents of rs must be kept in
EX/MEM, which is not necessary in the case of loads or arithmetic
instructions.

• Instructions must pass through all stages even if there is nothing
to be done in that stage.

• The pipeline takes 4 cycles before it is operating at full efficiency.

166

CSE378 WINTER, 2001

Control
• The basic idea with pipeline control is to pass along control

information from stage to stage:

control unit

IF/ID ID/EX EX/MEM MEM/WB

RegWrite
MemToReg

Branch
MemRead
MemWrite

RegDest
ALUSrc
ALUops

WB

M

EX M

WB

WB

167

CSE378 WINTER, 2001

Control in the Ideal Case
• Control signals must be split among the 5 stages:

• IF: nothing special to control (always read instruction, increment
PC)

• ID: nothing special, same for all instructions

• EX: control signals for ALUsrc and ALUop are needed.

• MEM: Controls for MemRead, MemWrite, and Branch are
needed here

• WB: Controls for what to write (MemToReg) and RegWrite and
RegDst needed here

