
198

CSE378 WINTER, 2001

Pipelining Wrapup
• All modern processors all use pipelining to improve performance.

Additional performance gains are achieved through:

• Superscalar execution (multiple functional units)

• Superpipelining (deeper pipelines)

• Dynamic scheduling (finding the “best” sequence of instructions
to execute)

• Branch prediction Deep pipelines incur larger branch penalties

• Speculative execution (execute instructions beyond branches)

199

CSE378 WINTER, 2001

Organization
• Modern processors look more like:

IMEM

Branch
Predictor

Register
File

Queue

DMEM

FP
ALU

Integer
ALU

Branch

Instruction
Scheduler

Commit
Unit

PC

Ins.

200

CSE378 WINTER, 2001

What do the units do?
• Instruction queue: holds a pile of to-be-worked on instructions;

these may come from different paths of a branch...

• Instruction scheduler: attempts to find the best set of instructions
to send to the functional units. It may also “rename” registers

• Functional units: integer ALU, floating point ALU, branch
computation, load/store unit

• Branch predictor: maintains a table of past branches and history

• Instructions need to wait until all of their operands are available.
When they are, they are “executed”.

• Results are passed to the commit unit.

• The commit unit is responsible for committing results in the right
order (or maybe not at all, if a branch was or was not taken!)

201

CSE378 WINTER, 2001

Dealing with branches.
• Below we’ll assume:

B = % of instructions that are branches

D = number of cycles of branch “delay/penalty”

• Always stalling:
CPI = (1-B) + (B * (1+D))

• Delayed branches (C is the % of the delay slots the compiler can
fill):

CPI = (1-B) + (B * (1+(1-C)*D))

• Predict not taken (T is the % of branches taken)
CPI = (1-B) + ((1-T) * B) + (T * B * (1+D))

• Predict taken (T is the % of branches taken)
CPI = (1-B) + (T * B) + ((1-T) * B * (1+D))

• Branch prediction (P is the % of the time our prediction is wrong):
CPI = (1-B) + ((1-P) * B) + (P * B * (1+D))

202

CSE378 WINTER, 2001

Comparing the schemes
• The below table assumes:

• The program is 15% branches, all other instructions are CPI = 1

• Penalty (D) is 2 or 4 cycles

• The compiler can fill 60% of the 2 delay slots, 30% of 4

• 70% of branches are taken

• Branch prediction is 90% accurate

Scheme CPI (when D=2) CPI (when D=4)

Always stall 1.3 1.6

Delayed branches 1.12 1.42

Predict not taken 1.21 1.42

Predict taken 1.09 1.18

Full prediction 1.03 1.06

203

CSE378 WINTER, 2001

Branch Prediction
• Keep a table mapping branches to history (did we take the branch

the last time?)

• Suppose we have a 256 entry table.

• If we find a branch at address N, we locate its entry like this:
index = N % 256

(or easier: index = N & 0x000000FF)

• The simplest predictor just keeps one bit of state: taken/not-taken

• Most predictors use a two bit scheme:

predict taken

predict not taken

predict taken

predict not taken

not taken

not taken

not taken

taken

taken

taken

not taken

taken

204

CSE378 WINTER, 2001

The AMD Athlon
• 35+ million transistors; clock speeds in excess of 1 GHz

• The “front end” of the processor translates the incoming CISC
instructions (up to 3 x86 instructions) into RISC86/MacroOp
instructions

• The RISC86 instructions are passed to the instruction control unit,
which can manage up to 72 instructions (= a maximum of 36 x86
instructions) at a time. The instructions are scheduled here, and
the unit may issue up to 9 instructions per cycle.

• There are 9 pipelines: 3 integer, 3 address calculation, 3 floating-
point/MMX instructions. The integer pipelines have 10 stages.

• Finally, the instruction control unit handles committing completed
instructions (up to 9 per cycle)

• Branch prediction: 2048 entry history table & branch target table

205

CSE378 WINTER, 2001

Athlon Block Diagram

