
20

CSE378 WINTER, 2001

Introduction to the MIPS ISA

21

CSE378 WINTER, 2001

Overview
• Remember that the machine only understands very basic

instructions (machine instructions)

• It is the compiler’s job to translate your high-level (e.g. C program)
into machine instructions. In more detail (forgetting linking):

• Assembly language is a thin veneer over machine language.

Source program (foo.c)

Assembly program (foo.s)

Compiler (cc -S foo.c)

Assembler (cc foo.s)

Executable program (a.out)

this is where we start

machine independent

machine dependent

22

CSE378 WINTER, 2001

Overview (2)
• Think about a simple C program...

int array[100];

void main () {

int i;

for (i=0; i<100; i++)

array[i] = i;

}

• What set of instructions (ISA) should the machine provide to
execute it?

• What does your intuition tell you about trade-offs between the ISA
and the size (length) of the resulting machine program?

• What kind of trade-offs exist between the ISA and the speed, cost,
complexity of the hardware needed to execute the program?

• Tensions and contributing factors: ease of programming, ease of
hardware design, program/memory size, compiler technology

23

CSE378 WINTER, 2001

MIPS ISA Overview
• MIPS is a “computer family”: R2000/3000 (32-bit), R4000/4400

(64-bit)

• New entries include R8000 (scientific/graphics) and R10000

• MIPS originated as a Stanford project: Microprocessor without
Interlocked Pipe Stages

• H+P posit 4 principles of hardware design. Try to keep them in
mind during our discussion of the MIPS ISA:

1. Simplicity favors regularity

2. Smaller is faster

3. Compromise

4. Make the common case fast

24

CSE378 WINTER, 2001

MIPS is a RISC
• RISC = Reduced (Regular/Restricted) Instruction Set Computer

• All arithmetic operations are of the form:

Rd <- R s op R t # the Rs are registers

• Important restriction: MIPS is a load store architecture: the ALU
can only operate on registers Why?

• Basic operations (really only a few kinds)
1. Arithmetic (addition, substraction, etc)

2. Logical (and, or, xor, etc)

3. Comparison (less-than, greater-than, etc)

4. Control (branches, jumps, etc)

5. Memory access (load and store)

• All MIPS instructions are 32 bits long

25

CSE378 WINTER, 2001

MIPS is a Load-Store Architecture
• Every operand of a MIPS instruction must be in a register (with

some exceptions)

• Variables must be loaded into registers

• Results have to be stored back into memory

• Example C fragment...
a = b + c;

d = a + b;

• ... would be “translated” into something like:
Load b into register Rx

Load c into register Ry

Rz <- Rx + Ry

Store Rz into a

Rz <- Rz + Rx

Store Rz into d

26

CSE378 WINTER, 2001

MIPS Registers
• Provides thirty-two, 32-bit registers, named $0, $1, $2 .. $31 used

for:

• integer arithmetic

• address calculations

• special-purpose functions defined by convention

• temporaries

• A 32-bit program counter (PC)

• Two 32-bit registers HI and LO used specifically for multiplication
and division

• Thirty-two 32-bit registers $f0, $f1, $f2 .. $f31 used for floating
point arithmetic

• Other special-purpose registers (see later)

27

CSE378 WINTER, 2001

Registers are part of the process “state”

31 0 31 0

32-bits32-bits

HI

LO

PC

r0

r1

r31

f0

f1

f31

28

CSE378 WINTER, 2001

MIPS Register Names and Conventions

Register Name Function Comment

$0

$1

$2-3

$4-7

$8-15

$16-23

$24-25

$26-27

$28

$29

$30

$31

zero

$at

$v0-v1

$a0-a3

$t0-t7

$s0-s7

$t8-t9

$k0-k1

$gp

$sp

$fp

$ra

Always 0

reserved for assembler

expression eval./function return

proc/funct call parameters

volatile temporaries

temporaries (saved across calls)

volatile temporaries

reserved kernel/OS

pointer to global data area

stack pointer

frame pointer

proc/funct return address

No-op on write

don’t use it!

not saved on call

saved on call

not saved on call

don’t use them

29

CSE378 WINTER, 2001

MIPS Information Units
• Data types and size:

• Byte

• Half-word (2 bytes)

• Word (4 bytes)

• Float (4 bytes, single precision format)

• Double (8 bytes, double precision format)

• Memory is byte addressable.

• A data type must start on an address divisible by its size (in bytes)

• The address of the data type is the address of its lowest byte
(MIPS on DEC is little endian)

30

CSE378 WINTER, 2001

MIPS Addressing

• In MIPS (and most byte addressable machines) every word
should start at an address divisable by 4.

• Why?

Byte, half-word, word addr 0

Byte, half-word addr 2

Byte
addr 7

0

4

8

31

CSE378 WINTER, 2001

MIPS Instruction Types
• As we said earlier, there are very few basic operations :

1. Memory access (load and store)

2. Arithmetic (addition, substraction, etc)

3. Logical (and, or, xor, etc)

4. Comparison (less-than, greater-than, etc)

5. Control (branches, jumps, etc)

• We’ll use the following notation when describing instructions:

rd: destination register (modified by instruction)

rs: source register (read by instruction)

rt: source/destination register (read or read+modified)

immed: a 16-bit value

32

CSE378 WINTER, 2001

Running Example
• Let’s translate this simple C program into MIPS assembly code:

int x, y;

void main() {

 ...

 x = x + y;

 if (x==y) {

 x = x + 3;

 }

 x = x + y + 42;

 ...

}

33

CSE378 WINTER, 2001

Load and Store Instructions
• Data is explicitly moved between memory and registers through

load and store instructions.

• Each load or store must specify the memory address of the
memory data to be read or written.

• Think of a MIPS address as a 32-bit, unsigned integer.

• Because a MIPS instruction is always 32 bits long, the address
must be specified in a more compact way.

• We always use a base register to address memory

• The base register points somewhere in memory, and the
instruction specifies the register number, and a 16-bit, signed
offset

• A single base register can be used to access any byte within ???
bytes from where it points in memory.

34

CSE378 WINTER, 2001

Load and Store Examples
• Load a word from memory:

lw rt, offset(base) # rt <- memory[base+offset]

• Store a word into memory:

sw rt, offset(base) # memory[base+offset] <- rt

• For smaller units (bytes, half-words) only the lower bits of a
register are accessible. Also, for loads, you need to specify
whether to sign or zero extend the data.

lb rt, offset(base) # rt <- sign-extended byte

lbu rt, offset(base) # rt <- zero-extended byte

sb rt, offset(base) # store low order byte of rt

35

CSE378 WINTER, 2001

Arithmetic Instructions
Opcode Operands Comments

ADD rd, rs, rt # rd <- rs + rt

ADDI rt, rs, immed # rt <- rs + immed

SUB rd, rs, rt # rd <- rs - rt

Examples:

ADD $8, $8, $10 # r8 <- r9 + r10

ADD $t0, $t1, $t2 # t0 <- t1 + t2

SUB $s0, $s0, $s1 # s0 <- s0 - s1

ADDI $t3, $t4, 5 # t3 <- t4 + 5

36

CSE378 WINTER, 2001

Multiply and Divide Instructions
• Multiplying two 32-bit numbers can yield a 64 bit number. Hence

the use of HI and LO registers.

• Dividing two numbers yields a quotient and a remainder.
Opcode Operands Comments

MULT rs, rt # HI/LO <- rs * rt

MULTU rs, rt # HI/LO <- rs * rt

DIV rs, rt # LO <- rs/rt

HI <- rs rem rt

DIVU rs, rt # LO <- rs/rt

HI <- rs rem rt

• If an operand is negative, the remainder is not specified by the
MIPS architecture.

37

CSE378 WINTER, 2001

Multiply and Divide Instructions (2)
• There are instructions to move between HI/LO registers.

Opcode Operands Comments

MFHI rd # rd <- HI

MTHI rs # HI <- rs

MFLO rd # rd <- LO

MTLO rs # LO <- rs

38

CSE378 WINTER, 2001

Integer Arithmetic
• Numbers can be either signed or unsigned

• The above instructions all check for, and signal overflow should it
occur.

• MIPS ISA provides instructions that don’t care about overflows:

• ADDU

• ADDIU

• SUBU, etc.

• For add and subtract, the computation is the same for both, but
the machine will signal an overflow when one occurs for signed
numbers.

39

CSE378 WINTER, 2001

Overflows in 2’s Complement
• Overflow occurs when the addition of two numbers of the same

sign results in a sum of the opposite sign

• Overflow cannot occur when adding operands of different signs

• Example 1: Assume a 4-bit machine. Register 9 contains 7 and
register 10 contains 3

• What happens when we use ADD? ADDU?

• Example 2: Assume a 4-bit machine. Register 9 contains 7 and
register 10 contains -3

• What happens when we use ADD? ADDU?

40

CSE378 WINTER, 2001

Flow of Control: Conditional Branches
• You can compare on...

• equality or inequality of two registers

• comparison of register to zero (>, <, <=, >=)

• ... and branch to a target that is a signed displacement (expressed
in number of instructions [words not bytes!]) from the instruction
following the branch.

41

CSE378 WINTER, 2001

Branches (2)
• In assembly language, it’s easiest to just use the target address

(from the label), rather than trying to figure out the number of
instructions.

BEQ rs, rt, target # branch if rs == rt

BNE rs, rt, target # branch if rs != rt

BGTZ rs, target # branch if rs > 0

BGEZ rs, target # branch if rs >= 0

BLTZ rs, target # branch if rs < 0

BLEZ rs, target # branch if rs <= 0

42

CSE378 WINTER, 2001

Comparison Between Registers
• What if you want to branch if R6 is greater than R7?

• We can use the SLT instruction:

SLT rd, rs, rt # if rs<rt then rd <- 1

else rd <- 0

SLTU rd, rs, rt # same, but rs,rt unsigned

• Example: Branch to L1 if $5 > $6

SLT $7, $6, $5 # $7 = 1, if $6 < $5

BNE $7, $0, L1

43

CSE378 WINTER, 2001

Jump Instructions
• Jump instructions allow for unconditional transfer of control:

J target # go to specified target

JR rs # jump to addr stored in rs

• Jump and link is used for procedure calls:

JAL target # jump to target, $31 <- PC

JALR rs, rd # jump to addr in rs

rd <- PC

• When calling a procedure, use JAL; to return, use JR $31

44

CSE378 WINTER, 2001

Logic Instructions
• Used to manipulate bits within words, set up masks, etc.

Opcode Operands Comments

AND rd, rs, rt # rd <- AND(rs, rt)

ANDI rt, rs, immed # rt <- AND(rs, immed)

OR rd, rs, rt

ORI rt, rs, immed

XOR rd, rs, rt

XORI rt, rs, immed

• The immediate constant is limited to 16 bits

• To load a constant in the 16 upper bits of a register we use LUI:
Opcode Operands Comments

LUI rt, immed # rt<31,16> <- immed

rt<15,0> <- 0

45

CSE378 WINTER, 2001

Logic Instruction Examples
1. Turn on the bits in the low order byte of R6:

ORI $6, $6, 0x00ff # set r6<7,0> to 1s

2. Turn off the bits in the low order byte of R6:

LUI $5, 0xffff # set r5<31,16> to 1s

ORI $5, 0xff00 # zero low order byte

AND $6, $6, $5 # zap low order byte in R6

3. Flip the the bits in the high order byte of R6: (check this one)

LUI $5, 0xff00 # 1s in upper byte

ANDI $5, 0x0000 # 0s every where else

XOR $6, $6, $5 # flip upper bits...

46

CSE378 WINTER, 2001

Shift Instructions
• Used to move bits around within registers.

• Logical shifts (zeros are shifted in from end).

SLL rd, rt, shamt # rd = rt shifted left by

shamt

SRL rd, rt, shamt # right shift

• Arithmetic shift right (sign extend from left)
SRA rd, rt, shamt # rd = rt shifted right by

shamt, and sign extended

• shamt is a 5-bit shift amount

47

CSE378 WINTER, 2001

Back to our example
.data # start of data segment

x: .word # data layout directive

y: .word # allocate two words

.text # start of text segment

.globl main

main:

la $t0, x # t0 holds &x

lw $t1, 0($t0) # t1 holds x

la $t2, y # t2 holds &y

lw $t3, 0($t2) # t3 holds y

add $t1, $t1, $t3 # x = x+y

sw $t1, 0($t0)

bne $t1, $t3, L1 # if x == y

add $t1, $t1, 3 # x = x+3

sw $t1, 0($t0)

L1: addi $t4, $t3, 17 # t4 = y + 17

add $t1, $t1, $t4

sw $t1, 0($t0)

48

CSE378 WINTER, 2001

Discussion
• Note that we’re going to great lengths to preserve the semantics

of the original C program.

• We’re storing back values to their memory locations immediately
after computing them.

• Why might this be a good idea?

• Why might this be a bad idea?

49

CSE378 WINTER, 2001

An optimized example
• We eliminated “unnecessary” stores..

.data # start of data segment

x: .word # data layout directive

y: .word # allocate two words

.text # start of text segment

.globl main

main:

la $t0, x # t0 holds &x

lw $t1, 0($t0) # t1 holds x

la $t2, y # t2 holds &y

lw $t3, 0($t2) # t3 holds y

add $t1, $t1, $t3 # x = x+y

bne $t1, $t3, L1 # if x == y

add $t1, $t1, 3 # x = x+3

L1: addi $t4, $t3, 17 # t4 = y + 17

add $t1, $t1, $t4

sw $t1, 0($t0)

50

CSE378 WINTER, 2001

Example C Program

#include <stdio.h>

int array[100];

void main ()

{

 int i;

 for (i=0; i<100; i++)

 array[i] = i;

}

51

CSE378 WINTER, 2001

Assembly Version (Hand coded)
.data # begin data segment

array: .space 400 # allocate 400 bytes

.text # begin code segment

.globl main # entry point must be global

main: move $t0, $0 # $t0 is used as counter

la $t1, array # $t1 is pointer into array

start: bge $t0, 100, exit# more than 99 iterations?

sw $t0, 0($t1) # store zero into array

addi $t0, $t0, 1 # increment counter

addi $t1, $t1, 4 # increment pointer into array

j start # goto top of loop

exit: j $ra # return to caller of main...

52

CSE378 WINTER, 2001

Assembly Version (Compiler Generated)
 .data

array: .space 400 # the comments are obviously

 .text # NOT generated by the compiler!

 .globl main

main:

 subu $sp, 8 # make room on stack

 sw $0, 4($sp) # i lives at 4($sp)...

$32: # ...initialize it to zero

 lw $14, 4($sp) # load i into $14

 mul $15, $14, 4 # $15 is used as base reg

 sw $14, array($15) # store i into array[i]

 lw $24, 4($sp) # load i into $24

 addu $25, $24, 1 # increment $24

 sw $25, 4($sp) # store new val into i

 blt $25, 100, $32 # if i<100 goto top

 move $2, $0 # set $2 to 0

 addu $sp, 8 # reset stack

 j $31

 .end main

