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Introduction to the MIPS ISA
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Overview
• Remember that the machine only understands very basic

instructions (machine instructions)

• It is the compiler’s job to translate your high-level (e.g. C program)
into machine instructions. In more detail (forgetting linking):

• Assembly language is a thin veneer over machine language.

Source program (foo.c)

Assembly program (foo.s)

Compiler (cc -S foo.c)

Assembler (cc foo.s)

Executable program (a.out)

this is where we start

machine independent

machine dependent
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Overview (2)
• Think about a simple C program...

int array[100];

void main () {

int i;

for (i=0; i<100; i++)

array[i] = i;

}

• What set of instructions (ISA) should the machine provide to
execute it?

• What does your intuition tell you about trade-offs between the ISA
and the size (length) of the resulting machine program?

• What kind of trade-offs exist between the ISA and the speed, cost,
complexity of the hardware needed to execute the program?

• Tensions and contributing factors: ease of programming, ease of
hardware design, program/memory size, compiler technology
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MIPS ISA Overview
• MIPS is a “computer family”:  R2000/3000 (32-bit), R4000/4400

(64-bit)

• New entries include R8000 (scientific/graphics) and R10000

• MIPS originated as a Stanford project: Microprocessor without
Interlocked Pipe Stages

• H+P posit 4 principles of hardware design. Try to keep them in
mind during our discussion of the MIPS ISA:

1. Simplicity favors regularity

2. Smaller is faster

3. Compromise

4. Make the common case fast
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MIPS is a RISC
• RISC = Reduced (Regular/Restricted) Instruction Set Computer

• All arithmetic operations are of the form:

Rd <- R s op R t # the Rs are registers

• Important restriction: MIPS is a load store architecture: the ALU
can only operate on registers  Why?

• Basic operations (really only a few kinds)
1. Arithmetic (addition, substraction, etc)

2. Logical (and, or, xor, etc)

3. Comparison (less-than, greater-than, etc)

4. Control (branches, jumps, etc)

5. Memory access (load and store)

• All MIPS instructions are 32 bits long
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MIPS is a Load-Store Architecture
• Every operand of a MIPS instruction must be in a register (with

some exceptions)

• Variables must be loaded into registers

• Results have to be stored back into memory

• Example C fragment...
a = b + c;

d = a + b;

• ... would be “translated” into something like:
Load b into register Rx

Load c into register Ry

Rz <- Rx + Ry

Store Rz into a

Rz <- Rz + Rx

Store Rz into d
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MIPS Registers
• Provides thirty-two, 32-bit registers, named $0, $1, $2 .. $31 used

for:

• integer arithmetic

• address calculations

• special-purpose functions defined by convention

• temporaries

• A 32-bit program counter (PC)

• Two 32-bit registers HI and LO used specifically for multiplication
and division

• Thirty-two 32-bit registers $f0, $f1, $f2 .. $f31 used for floating
point arithmetic

• Other special-purpose registers (see later)
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Registers are part of the process “state”

31 0 31 0

32-bits32-bits

HI

LO

PC

r0

r1

r31

f0

f1

f31
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MIPS Register Names and Conventions

Register Name Function Comment

$0

$1

$2-3

$4-7

$8-15

$16-23

$24-25

$26-27

$28

$29

$30

$31

zero

$at

$v0-v1

$a0-a3

$t0-t7

$s0-s7

$t8-t9

$k0-k1

$gp

$sp

$fp

$ra

Always 0

reserved for assembler

expression eval./function return

proc/funct call parameters

volatile temporaries

temporaries (saved across calls)

volatile temporaries

reserved kernel/OS

pointer to global data area

stack pointer

frame pointer

proc/funct return address

No-op on write

don’t use it!

not saved on call

saved on call

not saved on call

don’t use them
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MIPS Information Units
• Data types and size:

• Byte

• Half-word (2 bytes)

• Word (4 bytes)

• Float (4 bytes, single precision format)

• Double (8 bytes, double precision format)

• Memory is byte addressable.

• A data type must start on an address divisible by its size (in bytes)

• The address of the data type is the address of its lowest byte
(MIPS on DEC is little endian)

30

CSE378 WINTER, 2001

MIPS Addressing

• In MIPS (and most byte addressable machines) every word
should start at an address divisable by 4.

• Why?

Byte, half-word, word addr 0

Byte, half-word addr 2

Byte
addr 7

0

4

8
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MIPS Instruction Types
• As we said earlier, there are very few basic operations :

1. Memory access (load and store)

2. Arithmetic (addition, substraction, etc)

3. Logical (and, or, xor, etc)

4. Comparison (less-than, greater-than, etc)

5. Control (branches, jumps, etc)

• We’ll use the following notation when describing instructions:

rd: destination register (modified by instruction)

rs: source register (read by instruction)

rt: source/destination register (read or read+modified)

immed: a 16-bit value
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Running Example
• Let’s translate this simple C program into MIPS assembly code:

int x, y;

void main() {

  ...

  x = x + y;

  if (x==y) {

    x = x + 3;

  }

  x = x + y + 42;

  ...

}
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Load and Store Instructions
• Data is explicitly moved between memory and registers through

load and store instructions.

• Each load or store must specify the memory address of the
memory data to be read or written.

• Think of a MIPS address as a 32-bit, unsigned integer.

• Because a MIPS instruction is always 32 bits long, the address
must be specified in a more compact way.

• We always use a base register to address memory

• The base register points somewhere in memory, and the
instruction specifies the register number, and a 16-bit, signed
offset

• A single base register can be used to access any byte within ???
bytes from where it points in memory.
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Load and Store Examples
• Load a word from memory:

lw rt, offset(base)  # rt <- memory[base+offset]

• Store a word into memory:

sw rt, offset(base)  # memory[base+offset] <- rt

• For smaller units (bytes, half-words) only the lower bits of a
register are accessible.  Also, for loads, you need to specify
whether to sign or zero extend the data.

lb rt, offset(base) # rt <- sign-extended byte

lbu rt, offset(base) # rt <- zero-extended byte

sb rt, offset(base) # store low order byte of rt
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Arithmetic Instructions
Opcode Operands Comments

ADD rd, rs, rt # rd <- rs + rt

ADDI rt, rs, immed # rt <- rs + immed

SUB rd, rs, rt # rd <- rs - rt

Examples:

ADD $8, $8, $10 # r8 <- r9 + r10

ADD $t0, $t1, $t2 # t0 <- t1 + t2

SUB $s0, $s0, $s1 # s0 <- s0 - s1

ADDI $t3, $t4, 5 # t3 <- t4 + 5



36

CSE378 WINTER, 2001

Multiply and Divide Instructions
• Multiplying two 32-bit numbers can yield a 64 bit number.  Hence

the use of HI and LO registers.

• Dividing two numbers yields a quotient and a remainder.
Opcode Operands Comments

MULT rs, rt # HI/LO <- rs * rt

MULTU rs, rt # HI/LO <- rs * rt

DIV rs, rt # LO <- rs/rt

# HI <- rs rem rt

DIVU rs, rt # LO <- rs/rt

# HI <- rs rem rt

• If an operand is negative, the remainder is not specified by the
MIPS architecture.
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Multiply and Divide Instructions (2)
• There are instructions to move between HI/LO registers.

Opcode Operands Comments

MFHI rd # rd <- HI

MTHI rs # HI <- rs

MFLO rd # rd <- LO

MTLO rs # LO <- rs
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Integer Arithmetic
• Numbers can be either signed or unsigned

• The above instructions all check for, and signal overflow should it
occur.

• MIPS ISA provides instructions that don’t care about overflows:

• ADDU

• ADDIU

• SUBU, etc.

• For add and subtract, the computation is the same for both, but
the machine will signal an overflow when one occurs for signed
numbers.
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Overflows in 2’s Complement
• Overflow occurs when the addition of two numbers of the same

sign results in a sum of the opposite sign

• Overflow cannot occur when adding operands of different signs

• Example 1:  Assume a 4-bit machine.  Register 9 contains 7 and
register 10 contains 3

• What happens when we use ADD? ADDU?

• Example 2:  Assume a 4-bit machine.  Register 9 contains 7 and
register 10 contains -3

• What happens when we use ADD? ADDU?
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Flow of Control: Conditional Branches
• You can compare on...

• equality or inequality of two registers

• comparison of register to zero (>, <, <=, >=)

• ... and branch to a target that is a signed displacement (expressed
in number of instructions [words not bytes!]) from the instruction
following the branch.
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Branches (2)
• In assembly language, it’s easiest to just use the target address

(from the label), rather than trying to figure out the number of
instructions.

BEQ rs, rt, target # branch if rs == rt

BNE rs, rt, target # branch if rs != rt

BGTZ rs, target # branch if rs > 0

BGEZ    rs, target # branch if rs >= 0

BLTZ    rs, target # branch if rs < 0

BLEZ    rs, target # branch if rs <= 0
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Comparison Between Registers
• What if you want to branch if R6 is greater than R7?

• We can use the SLT instruction:

SLT rd, rs, rt # if rs<rt then rd <- 1

#   else rd <- 0

SLTU    rd, rs, rt # same, but rs,rt unsigned

• Example: Branch to L1 if $5 > $6

SLT $7, $6, $5   # $7 = 1, if $6 < $5

BNE     $7, $0, L1
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Jump Instructions
• Jump instructions allow for unconditional transfer of control:

J target # go to specified target

JR rs # jump to addr stored in rs

• Jump and link is used for procedure calls:

JAL target # jump to target, $31 <- PC

JALR rs, rd # jump to addr in rs

# rd <- PC

• When calling a procedure, use JAL; to return, use JR $31



44

CSE378 WINTER, 2001

Logic Instructions
• Used to manipulate bits within words, set up masks, etc.

Opcode Operands Comments

AND rd, rs, rt # rd <- AND(rs, rt)

ANDI rt, rs, immed # rt <- AND(rs, immed)

OR rd, rs, rt

ORI rt, rs, immed

XOR rd, rs, rt

XORI rt, rs, immed

• The immediate constant is limited to 16 bits

• To load a constant in the 16 upper bits of a register we use LUI:
Opcode Operands Comments

LUI rt, immed # rt<31,16> <- immed

# rt<15,0>  <- 0
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Logic Instruction Examples
1. Turn on the bits in the low order byte of R6:

ORI $6, $6, 0x00ff # set r6<7,0> to 1s

2. Turn off the bits in the low order byte of R6:

LUI $5, 0xffff # set r5<31,16> to 1s

ORI $5, 0xff00 # zero low order byte

AND $6, $6, $5 # zap low order byte in R6

3. Flip the the bits in the high order byte of R6: (check this one)

LUI $5, 0xff00 # 1s in upper byte

ANDI $5, 0x0000 # 0s every where else

XOR $6, $6, $5 # flip upper bits...
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Shift Instructions
• Used to move bits around within registers.

• Logical shifts (zeros are shifted in from end).

SLL rd, rt, shamt # rd = rt shifted left by

# shamt

SRL rd, rt, shamt # right shift

• Arithmetic shift right (sign extend from left)
SRA rd, rt, shamt # rd = rt shifted right by

# shamt, and sign extended

• shamt is a 5-bit shift amount
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Back to our example
.data # start of data segment

x: .word # data layout directive

y: .word # allocate two words

.text  # start of text segment

.globl main

main:

la $t0, x # t0 holds &x

lw $t1, 0($t0) # t1 holds x

la $t2, y # t2 holds &y

lw $t3, 0($t2) # t3 holds y

add $t1, $t1, $t3 # x = x+y

sw $t1, 0($t0)

bne $t1, $t3, L1 # if x == y

add $t1, $t1, 3 #  x = x+3

sw $t1, 0($t0)

L1:  addi $t4, $t3, 17 # t4 = y + 17

add $t1, $t1, $t4

sw $t1, 0($t0)
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Discussion
• Note that we’re going to great lengths to preserve the semantics

of the original C program.

• We’re storing back values to their memory locations immediately
after computing them.

• Why might this be a good idea?

• Why might this be a bad idea?
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An optimized example
• We eliminated “unnecessary” stores..

.data # start of data segment

x: .word # data layout directive

y: .word # allocate two words

.text  # start of text segment

.globl main

main:

la $t0, x # t0 holds &x

lw $t1, 0($t0) # t1 holds x

la $t2, y # t2 holds &y

lw $t3, 0($t2) # t3 holds y

add $t1, $t1, $t3 # x = x+y

bne $t1, $t3, L1 # if x == y

add $t1, $t1, 3 #  x = x+3

L1:  addi $t4, $t3, 17 # t4 = y + 17

add $t1, $t1, $t4

sw $t1, 0($t0)
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Example C Program

#include <stdio.h>

int array[100];

void main ()

{

  int i;

  for (i=0; i<100; i++)

    array[i] = i;

}
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Assembly Version (Hand coded)
.data # begin data segment

array: .space 400 # allocate 400 bytes

.text # begin code segment

.globl main # entry point must be global

main: move $t0, $0 # $t0 is used as counter

la $t1, array # $t1 is pointer into array

start: bge $t0, 100, exit# more than 99 iterations?

sw $t0, 0($t1) # store zero into array

addi $t0, $t0, 1 # increment counter

addi $t1, $t1, 4 # increment pointer into array

j start # goto top of loop

exit: j $ra # return to caller of main...
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Assembly Version (Compiler Generated)
        .data

array:  .space 400 # the comments are obviously

        .text # NOT generated by the compiler!

        .globl  main

main:

        subu    $sp, 8 # make room on stack

        sw      $0, 4($sp) # i lives at 4($sp)...

$32: # ...initialize it to zero

        lw      $14, 4($sp) # load i into $14

        mul     $15, $14, 4 # $15 is used as base reg

        sw      $14, array($15) # store i into array[i]

        lw      $24, 4($sp) # load i into $24

        addu    $25, $24, 1 # increment $24

        sw      $25, 4($sp) # store new val into i

        blt     $25, 100, $32 # if i<100 goto top

        move    $2, $0 # set $2 to 0

        addu    $sp, 8 # reset stack

        j       $31

        .end    main


