
Ben Dugan

Winter 2001

• Hardware/Software interface:

•Relationship between compilers, assemblers, linkers, loaders:
who does what in terms of getting my program to run?

•What kind of instructions does the machine understand?

• Organization:

•What are the basic pieces of the machine (registers, cache,
ALU, busses)?

•How are these pieces connected? How are they controlled?

• Performance:

•What does it mean for one machine to be “faster” than another?

•What are MFLOPS, MIPS, benchmark programs?

• Implementation:

•What’s logic design?

•What are the technologies (CMOS, VLSI, etc)?

• ISA is an interface between the hardware and software.

• ISA is what is visible to the programmer (note that the OS and
users might have different view)

• ISA consists of

•instructions (operations, how are they encoded?)

•information units (what is their size, how are they addressed)

•registers (general or special purpose)

•input-output control

• ISA is an abstract view of the machine: underlying details should
be hidden from the programmer (although this is not always the
case)

• Sequence of machines that have the same ISA (binary
compatible). For example:

1. IBM 360, 370, etc

2. IBM PowerPC (601, 603, etc)

3. DEC PDP-11, VAX

4. Intel x86 (80286, 80386, 80486, Pentium)

5. Motorola 680x0

6. MIPS Rx000, SGI

7. Sun SPARC

8. DEC Alpha (21x64)

• With “portable” software, are “binary compatible” machines
important?

• ENIAC: programmed by connecting wires and setting switches,
data read from punched cards

• 1944-45: von Neumann joins ENIAC group (at U. Penn.), writes
memo based on work with Eckert and Mauchly

• 1946: Burks, Goldstine and von Neumann (at IAS) write a paper
based on above memo explaining the concept of the stored
program computer (von Neumann machine)

• 1946 paper introduced the idea of treating the program as data,
using binary representations, and defined the basic building
blocks of the machine

• History neglects to credit many of the pioneers esp. Eckert and
Mauchly, but also the early programmers of machines like ENIAC
(usually women).

1st 2nd 3rd 4th 5th ...

Proces-
sor
Tech-
nology

Vac-
uum
tubes

transis-
tors

inte-
grated
circuits

LSI VLSI Very
VLSI

Proces-
sor
Struc-
ture

single
proces-
sor

multi-
ple
func-
tional
units

micros
and
minis

work-
stations
and PCs

32-bit
micro-
comput-
ers

64-bit +
MP
micros

Mem-
ory

Vac-
uum
tubes

Mag-
netic
core

semi-
conduc-
tors

semi-
cond.

64KB

semi-
cond.

512 KB

semi-
cond.

64 MB

Exam-
ple
machine

UNIVA
C

1950s

Bur-
roughs
5500

1960-68

PDP-11

1969-77

Apple II

1978-
mid 80s

Apple
Mac,
1980s

Alpha,
SPARC,

1990s

• Instructions and data are binary strings

• 5 basic building blocks: arithmetic (datapath), control, memory,
input, output:

Control

MemoryInput Output

Datapath

Control flow

Data/instruction flow

PC

Status

ALUControl

Registers

I/O
Memory
Hierarchy

I/O BusMemory
Bus

CPU

• Registers are visible both to hardware and programmer

•High-speed storage of operands

•Easy to name

•Also used to address memory

• Most current computers have 32 or 64 registers

• Not all registers are “equal”

•Some are special purpose (eg. in MIPS $0 is hardwired to 0).

•Integer / Floating point

•Conventions (stack pointers)

• Why no more than 32 or 64? (at least 3 good reasons)

• Memory is a hierarchy of devices/components which get
increasingly faster (and more expensive) as they get nearer to the
CPU:

• Library metaphor of memory hierarchy

Memory level Capacity (bytes) Speed Relative Speed Price

Registers 100s to 1000s nanoseconds 1 ??

Cache 16KB on-chip

1MB off-chip

nanoseconds

10s of ns

1-2

5-10

??

$100/MB

Primary memory 10-100MB 10s to 100s ns 10-100 $5/MB

Secondary mem. 1-10GB 10s of ms 1,000,000 $.1/MB

• Remember that computers represent all data (integers, floating
point numbers, characters, instructions, etc.) in a binary
representation. Interpretation depends on context.

• Representing integers: What characteristics does our scheme
need?

•Easy test for positive/negative.

•Equal number of positive and negative numbers

•Easy check for overflow

• Different schemes: sign and magnitude, 1’s complement, 2’s
complement

• 2’s complement tricks (sign bit extension, converting from positive
to negative, addition/subtraction)

• Hexidecimal notation

• Common powers of 2 (10:1024 (1K), 20:(1M), 30(1G),8:256, 16:
64K, 32(4G))

• Easy sign test, (roughly) equal number of positive and negative
numbers, easy to negate numbers, easy to add. (Note that with
negation and add, we get subtraction for “free”.)

• How does the machine multiply numbers? One (very slow) way is
repeated addition, here’s a faster way:

// Regs A & B will hold the values to multiply

// Reg product will hold the result.

product <= 0.

while (A != 0)

 if A is odd then

product <= product + B.

 halve A. // divide by 2; drop the remainder

 double B.

end loop

// at this point, product contains the answer

• Note we only need add, not-equal-to-zero, test-for-odd, halve,
and double. How many times do we iterate?

• Basic unit is the bit (stores a 0 or a 1)

• Bits are grouped together into larger units:

•bytes = 8 bits

•words = 4 bytes

•double words = 2 words (8 bytes)

• Memory is an array of information units

•Each unit has the same size

•Each unit has a unique address

•Address and contents are different

•A C variable is an abstraction for a memory location

122

-4

14

0

1

2

n-1

Address

A memory of size N

• The address space is the set of all information units that a
program can reference

• Most machines today are byte addressable

• Processor “size” impacts the size of the address space:

•16 bit processor: 64KB (too small nowadays)

•32 bit processor: 4GB (starting to be too small)

•64 bit processor: really big (should last for a while...)

• Rule of thumb: We’re using up address space at a rate of around
1 bit per year...

• On a byte addressable machine, every word starts at an address
divisable by 4:

• Big vs. Little Endian: within a data unit (eg. word), how are the
individual bytes laid out?

• Little/Big: address of data unit is address of low/high order byte
(DEC MIPS is Little; SGI MIPS, SPARC are Big)

0

4

8

n-4

Address

A memory of size N bytes

• The CPU executes a program by following this cycle:
1. Fetch the next instruction

2. Decode it

3. Execute it

4. Compute the address of the next instruction

5. Goto 1.

• An instruction tells the CPU:

•The operation to be performed (the opcode)

•The operands (zero or more)

• For a given instruction, the ISA specifies

•the meaning (semantics) of the opcode

•how many operands are required (and their types)

• Operands can be of the following type

•registers

•memory address

•constant (immediate data)

• In MIPS, the operands are typically registers or small constants

