
174

CSE378 WINTER, 2001

Hazards

175

CSE378 WINTER, 2001

Introduction
• Pipelining up until now has been “ideal”

• In real life, though, we might not be able to fill the pipeline
because of hazards:

• Data hazards. For example, the result of an operation is needed
before it is computed:
add $7, $12, $15 # put result in $7

sub $8, $7, $12 # use $7

and $9, $13, $7 # use $7 again

• Note that there is no dependency for $12, b/c it is used only as a
source register.

• Control hazards. If we take the branch, then the instructions
were fetched after the branch (which are now in the pipe) are
the wrong ones.

176

CSE378 WINTER, 2001

Data Hazards

• The arrow represents a dependency. Arrows that go backwards
are trouble.

REGDMALUREGIM

REGDMALUREGIM

REGDMALUREGIM

Value of reg $7: 5 5 5 5 5 23 23

Clock cycle: 1 2 3 4 5 6 7

add $7, ...

sub $8, $7, $12

and $9, $13, $7

177

CSE378 WINTER, 2001

Detecting Data Dependencies
• Dependencies: Given two instructions, i and j (i occurs before j).

• We say a dependence exists between i and j if j reads the result
produced by i, and there is no instruction k which occurs between
i and j and that produces the same result as i.

• We call a data dependence a hazard when an instruction tries to
read a register in stage 2 (ID) and this register will be written by a
previous instruction that has not yet completed stage 5 (WB).

• This is sometimes called a read-after-write hazard.

• What kind of instructions can create data dependences?

• Modern microprocessors have several ALUs, floating point units
that take longer than integer units, etc which give rise to other
kinds of data hazards.

178

CSE378 WINTER, 2001

Resolving Data Hazards
• There are several options:

• Build a hazard detection unit, which stalls the pipeline until the
hazard has passed. It does this by inserting “bubbles”
(essentially nops) in the pipeline. This isn’t a great idea. We’d
like to avoid it, if possible.

• Forwarding. Forward the result as an ALU source.

• Software (static) scheduling. Leave it up to the compiler. It must
schedule instructions to avoid hazards. Often it won’t be able
to, so it will issue no-ops (an instruction that does nothing)
instead. This is the cheapest (in terms of hardware) solution.

• Hardware (dynamic) scheduling. Build special hardware that
schedules instructions dynamiclly.

179

CSE378 WINTER, 2001

Hazard Detection and Stalling

• Note that the hazard costs us 3 cycles...

REGDMALUREGIM

REGDMALUREGIM

REGDMALUREGIM

sub $8, $7, $12

and $9, $13, $7

bubble bubble bubble

add $7,...

180

CSE378 WINTER, 2001

Detecting Hazards
• Between instruction i+1 and instruction i (3 bubbles):

• ID/EX.WriteReg == IF/ID read-register 1 or 2 (in fact, it is slightly
more complex b/c write-register can be rd or rt depending on
the instruction)

• Between instruction i+2 and i (2 bubbles):

• EX/MEM.WriteReg == IF/ID read-register 1 or 2

• Between instruction i+3 and i (1 bubble):

• MEM/WB.WriteReg == IF/ID read-register 1 or 2

• Note that stalls stop instructions in the ID stage. Therefore, we
must stop fetching new instructions, or else we would clobber the
PC and the IF/ID register. So we need control lines to:

• Create bubbles. This can be done by setting all control lines that
are passed from ID to 0, hence creating a nop.

• Prevent new instruction fetches. This should be done for as
many cycles as there are bubbles.

181

CSE378 WINTER, 2001

Improvements
• Our stalling scheme is very conservative, and there are a few

improvements we can make.

• Is the RegWrite control bit asserted (this determines whether
we’re really dealing with an R-type or load instruction)?

• Build a better register file. Currently, we assume that the register
file will not produce the correct result if a given register is both
read and written in the same cycle. Doing this would eliminate
hazards in the WB stage.

182

CSE378 WINTER, 2001

Forwarding
• Inserting bubbles is a pessimistic solution, since data that is

written during the writeback stage is often computed much earlier:

• At the end of the EX stage for arithmetic instructions

• At the end of the MEM stage for a load.

• So why not forward the result of the computation (or load) directly
to the input of the ALU if it is required there?

• Forwarding is sometimes called bypassing.

• Note that for reasons related to interrupts or exceptions, we do not
want the state of the process (i.e. the registers), to be modified
until the last stage.

183

CSE378 WINTER, 2001

Forwarding Example

• There is no need to wait until WB, because we’ve already
computed the value required.

REGDMALUREGIM

REGDMALUREGIM

REGDMALUREGIM

sub $8, $7, $12

and $9, $13, $7

add $7,...

$7 is computed here

184

CSE378 WINTER, 2001

Implementing Forwarding
• Change the data path so that data can be read from either the EX/

MEM or MEM/WB registers and be forwarded to one of the ALU
inputs.

• This requires logic to detect forwarding:

• We can do this at stage 3 (EX) of instruction i to forward to stage
2 (ID) of instruction i+1

• We can do this at stage 4 (MEM) of instruction i to forward to
stage 2 (ID) of instruction i+2.

• It also requires additional inputs to the muxes over the ALU inputs
(inputs can now come from ID/EX, EX/MEM, or MEM/WB pipe
registers).

185

CSE378 WINTER, 2001

The Trouble with Loads
• What if we have a load followed by an arithmetic operation which

needs the result of the load:
lw $7, 16($8)

add $9, $9, $7

• We’re busy fetching the data while it is needed in the EX stage.

REGDMALUREGIM

REGDMALUREGIM

add $9, $9, $7

lw $7, 16($8)

$7 is ready here

$7 is needed here

186

CSE378 WINTER, 2001

Loads
• Forwarding cannot save the day in the face of a dependent

instruction which immediately follows a load.

• The only solution is to insert a bubble after loads if the next
operation is dependent, so we still need a hazard detection unit.

• Good compilers will attempt to schedule instructions in the “load
delay slot” so as to avoid these kinds of stalls.

187

CSE378 WINTER, 2001

Scheduling
• Other important approaches include scheduling the instructions to

avoid hazards, in hardware or software.

• This is particularly important for processors which have multiple or
very deep pipelines (most modern processors).

• Dependences force a partial ordering on the instruction stream.
lw $t2, 0($t0) # 1

add $t5, $t2, $t3 # 2

sub $t3, $t1, $t8 # 3

mult $t7, $t8, $t8 # 4

addi $t5, $t7, 16 # 5

• Three kinds of dependence: data (read-after-write), anti-
dependence (write-after-read), output (write-after-write).

• Above: data dependences (1->2); anti-depencences (2->3, 4->5);
output (2->5).

• How can we reorder these instructions to do better?

188

CSE378 WINTER, 2001

Control Hazards
• Pipelining and branching just don’t get along...

• The transfer of control, via jumps, returns, and taken branches
cause control hazards.

• The branch instruction decides whether to branch in the MEM
stage. In other words, if the branch is taken, the PC isn’t updated
to the proper address until the end of the MEM stage.

• By this time, however, we’ve already entered 3 instructions into
the pipeline that were the wrong ones!

beq $t0, $t1, foo # assume $t0==$t1

and $1, $2, $3

add $4, $5, $6

sub $7, $8, $9

foo: add $4, $9, $10

189

CSE378 WINTER, 2001

Example

REGDMALUREGIM

REGDMALUREGIM

REGDMALUREGIM

and $1, $2, $3

add $4, $5, $6

beq $t0, $t1, foo

REGDMALUREGIM

REGDMALUREGIM

sub $7, $8, $9

and $4, $9, $10

We potentially
fetch and start
working on 3
incorrect instructions!!

190

CSE378 WINTER, 2001

Resolving Control Hazards
• Detecting one is easy: just look at the opcode!

• At least 4 possibilities:

• Always stall. Stall as soon as we see a branch. This costs a bit
of control hardware and 3 cycles for every branch.

• Assume branch not taken. Just go ahead and start executing
the next instructions, but find a way to flush those instructions if
the branch was taken. This costs more control hardware and 3
cycles only if the branch is taken.

• Delayed branches. Change the semantics of your branch
instruction to force the compiler/assembler to deal with the
problem.

• Branch prediction. Try to guess whether the branch will be taken
or not and do the right thing. Be ready to flush the pipeline in
case you were wrong...

191

CSE378 WINTER, 2001

Assume Branch Not Taken
• We need to be able to flush the pipeline in case the branch

actually was taken.

• If the branch is taken:

• For the IF stage, we zero out the instruction field in IF/ID register.

• For the ID stage, since this is where we determine control, we
just set all control lines to zero, creating the effect of a nop.

• For the EX stage, we use an extra mux to zero out the result of
the ALU.

• This approach costs additional control hardware and costs cycles
only when the branch is taken.

• A rule of thumb says that forward branches are taken 60% of the
time, and backward branches (as in loops) are taken 85% of the
time.

192

CSE378 WINTER, 2001

Delayed Branches
• Change the semantics (meaning) of your branch instruction so

that they won’t have effect until N (where N is the branch delay)
cycles later.

• This means that the N instructions after the branch will be
executed regardless of the branch outcome. These are called
delay slots.

• This forces the programmer/compiler/assembler to deal with the
problem, by requiring them to fill the N delay slots.

• This costs the hardware nothing, since it is the compilers job to
assure that correct instructions (or nops) are scheduled in the
delay slots.

• Good compilers can usually fill 1 or 2 slots.

• MIPS branches are delayed (1 slot) and compilers can fill around
70% of the slots.

193

CSE378 WINTER, 2001

Branch Prediction
• Develop some hardware to tell you the chances that you will

actually take the branch or not (a history table, for example).

• Given this information, make a prediction (taken or untaken) and
start executing instructins speculatively.

• If you’re wrong, you still have to flush the pipeline.

• Note that assuming branch-not-taken is just a special case of
branch prediction (where you always predict not taken).

• Branch prediction should do better than assuming not taken, but
you pay the price in additional hardware.

• Branch prediction should do better than delayed branches,
assuming you predict right more often than the compiler can fill
the delay slot with interesting work (not a nop).

194

CSE378 WINTER, 2001

Exceptions
• Historical definitions:

• An exception is an unexpected event from within the processor
(such as arithmetic overflow).

• An interrupt is an unexpected event from outside of the
processor (such as IO requests).

• MIPS doesn’t distinguish the source of the event, and calls both of
the above exceptions.

• Kinds:

• IO device request (external)

• System call (internal)

• Arithmetic overflow (internal)

• Undefined instruction (internal)

• Hardware malfunctions (either)

• Note that we can view system calls as exceptions!

195

CSE378 WINTER, 2001

How to Handle Exceptions
• We must save the program counter of the offending instruction in

the EPC (Exception PC), and then transfer control to the
operating system.

• The OS can then take appropriate action (provide an IO service
for the program, kill the program, etc). If it chooses to restart the
program, it can jump back to the EPC.

• How does the OS know what kind of exception? MIPS includes a
cause register.

• In hardware, the cause is saved into the cause register, the PC is
saved in EPC, and control transfers to a predefined address in the
kernel (0x4000 0040).

• Exceptions are hard to deal with because we have several
instructions in the pipeline.

• Suppose we get an arithmetic overflow (in the EX stage). We
need to be sure to let the downstream instructions finish, while
flushing the upstream instructions.

196

CSE378 WINTER, 2001

The Truth
• The MIPS R2000/3000 pipelined implementation is pretty close to

the one we’ve discussed in class, but modern machines use much
more complex implementations:

• Multiple pipelines: superscalar:

• Trend: exploit instruction level parallelism (ILP) by working on
multiple instructions simultaneously. This reduces CPI.

• Many modern machines issue up to 4 instructions at once.

• Challenge: statically or dynamically scheduling instructions to
extract maximal ILP while keeping cycle time low

• Deep pipelines: superpipelined:

• Trend: Reduce cycle time

• Modern pipelines often have 8 or more stages.

• Challenge: longer branch and load delays (often leading to
higher CPI), more forwarding required, scheduling is also
important

197

CSE378 WINTER, 2001

Summary
• Pipelining improves performance by increasing throughput

(instructions/time) not latency (time/instruction).

• We examined the classic 5 stage pipeline (IF, ID, EX, MEM, WB)

• Data and control hazards place limits on the speedups we can
achieve through pipelining.

• Data hazards can be avoided by stalling or forwarding (unless it
is a load!). Stalling can be achieved through software or
hardware. Forwarding is more efficient.

• Branch hazards can only be avoided by hardware stalling or
“defining away the problem” via delayed branches.

• The performance of branches can be improved through delayed
branches or branch prediction.

• Compilers must understand the pipeline to extract maximum
performance through scheduling. In MIPS, the ISA is no longer a
perfect abstraction.

