
63

CSE378 WINTER, 2001

Instruction Encoding

64

CSE378 WINTER, 2001

Introduction
• Remember that in a stored program computer, instructions are

stored in memory (just like data)

• Each instruction is fetched (according to the address specified in
the PC), decoded, and exectuted by the CPU

• The ISA defines the format of an instruction (syntax) and its
meaning (semantics)

• An ISA will define a number of different instruction formats.

• Each format has different fields

• The OPCODE field says what the instruction does (e.g. ADD)

• The OPERAND field(s) say where to find inputs and outputs of the
instruction.

65

CSE378 WINTER, 2001

MIPS Encoding
• The nice thing about MIPS (and other RISC machines) is that it

has very few instruction formats (basically just 3)

• All instructions are the same size (32 bits = 1 word)

• The formats are consistent with each other (i.e. the OPCODE field
is always in the same place, etc.)

• The three formats:

• I-type (immediate)

• R-type (register)

• J-type (jump)

66

CSE378 WINTER, 2001

I-type (immediate) Format
• An immediate instruction has the form:

XXXI rt, rs, immed

• Recall that we have 32 registers, so we need ??? bits each to
specify the rt and rs registers

• We allow 6 bits for the opcode (this implies a maximum of ???
opcodes, but there are actually more, see later)

• This leaves 16 bits for the immediate field.

31 25 20 15

026 21 16

immedOPC rs rt

67

CSE378 WINTER, 2001

I-type Example
• Example:

ADDI $a0, $12, 33 # a0 <- r12 + 33

• The ADDI opcode is 8, register a0 is register # 4.

• What would this be in binary? In hex?

31 25 20 15

026 21 16

8 12 4 33

68

CSE378 WINTER, 2001

Load-Store Formats
• A memory address is 32 bits, so it cannot be directly encoded in

an instruction.

• Recall the use of a base register + offset (16-bits) in the load-store
instructions.

• Thus, we need an OPCODE, a destination/source register
(destination for load, source for store), a base register, and an
offset.

• This sounds very similar to the I-type format... example:
LW $14, 8($sp) # r14 is loaded from stack+8

• The LW opcode is 35 (0x23)
31 25 20 15

026 21 16

35 29 14 8

69

CSE378 WINTER, 2001

R-type (register) format
• General form:

XXX rd, rt, rs

• Arithmetic-logical and comparison instructions require the
encoding of 3 registers, the rest can be used to specify the
OPCODE.

• To keep the format as regular as possible, the OPCODE has a
primary “opcode” and a “function” field.

• We also need 5 bits for the shift-amount, in case of SHIFT
instructions.

• The 16 bits used for the immediate field in the I-type instruction
are split into 5 bits for rd, 5 bits for shift-amount, and 6 bits for
function (the other fields are the same).

31 25 20 15 10 5

026 21 16 11 6

OPC rs rt rd sht funct

70

CSE378 WINTER, 2001

R-type Example

SUB $7, $8, $9 # r7 <- r8 - r9

• The opcode for all R-type instructions is zero, the function code for
SUB is 34, the shift amount is zero.

• What is this in binary/hex?

31 25 20 15 10 5

026 21 16 11 6

0 8 9 7 0 34

71

CSE378 WINTER, 2001

J-type (Jump) Format
• For a jump, we only need to specify the opcode, and we can use

the other bits for an address:

• We only have 26 bits for the address, but MIPS addresses are 32
bits long...

• Because the address must reference an instruction, which is a
word address, we can shift the address left by 2 bits (giving us 28
bits). We get the other 4 bits by combining with the 4 high-order
bits of the PC.

31 25

26

OPC address
0

72

CSE378 WINTER, 2001

Branch Addressing
• There are 2 kinds of branches:

1. EQ/NEQ family (compares 2 regs for (in)equality), example:

BEQ $14, $8, 1000

2. Compare-to-zero family (compares 1 reg to zero), example:

BGEZ $14, 1000

• Both “families” require OPCODE, rs register, and offset

• (1.) requires an additional register (rt)

• (2.) requires some encoding for (>=, <=, <, >)

• Note that we divide the offset by 4. Why?

31 25 20 15

026 21 16

offset/4OPC rs rt

or code (for >, <, etc)

73

CSE378 WINTER, 2001

Branch example
BEQ $14, $8, 1000 # PC := PC+1000 if r14==r8

BGEZ $14, 20 # PC := PC+20 if r14 >= 0

• The opcode for BEQ is 4; for BGEZ is 1, the code for >= is 1

31 25 20 15

026 21 16

2504 14 8

31 25 20 15

026 21 16

51 14 1

74

CSE378 WINTER, 2001

Assembly Language Version
• Recall our running example:

.data # begin data segment

array: .space 400 # allocate 400 bytes

.text # begin code segment

.globl main # entry point must be global

main: move $t0, $0 # $t0 is used as counter

la $t1, array # $t1 is pointer into array

start: bge $t0, 100, exit# more than 99 iterations?

sw $t0, 0($t1) # store zero into array

addi $t0, $t0, 1 # increment counter

addi $t1, $t1, 4 # increment pointer into array

j start # goto top of loop

exit: j $ra # return to caller of main...

75

CSE378 WINTER, 2001

Machine Language Version

Encoded: Machine Ins: Source Ins:

---------- --------------- ----------------------

0x00004021 addu $8, $0, $0 ; 9: move$t0, $0

0x3c091001 lui $9, 4097 ; 10: la$t1, array

0x29010064 slti $1, $8, 100 ; 11: bge$t0, 100, exit

0x10200005 beq $1, $0, 20

0xad280000 sw $8, 0($9) ; 12: sw$t0, 0($t1)

0x21080001 addi $8, $8, 1 ; 13: addi$t0, $t0, 1

0x21290004 addi $9, $9, 4 ; 14: addi$t1, $t1, 4

0x0810000b j 0x0040002c ; 15: jstart

0x03e00008 jr $31 ; 16: j$ra

