Introduction

Remember that in a stored program computer, instructions are
stored in memory (just like data)

Each instruction is fetched (according to the address specified in
the PC), decoded, and exectuted by the CPU

The ISA defines the format of an instruction (syntax) and its
meaning (semantics)

An ISA will define a number of different instruction formats.
Each format has different fields
The OPCODE field says what the instruction does (e.g. ADD)

The OPERAND field(s) say where to find inputs and outputs of the
instruction.

CSE378

WINTER, 2001

64

Instruction Encoding

CSE378 WINTER, 2001
MIPS Encoding
The nice thing about MIPS (and other RISC machines) is that it
has very few instruction formats (basically just 3)
All instructions are the same size (32 bits = 1 word)
The formats are consistent with each other (i.e. the OPCODE field
is always in the same place, etc.)
The three formats:
« |-type (immediate)
« R-type (register)
« J-type (jump)
CSE378 WINTER, 2001

63

65



-type (immediate) Format

An immediate instruction has the form:
XXXI rt, rs, immed

Recall that we have 32 registers, so we need ??? bits each to
specify the rt and rs registers

We allow 6 bits for the opcode (this implies a maximum of ??7?
opcodes, but there are actually more, see later)

This leaves 16 bits for the immediate field.

31 25 20 15

‘OPC ‘rs ‘rt ‘ immed
26 21 16 0

CSE378

WINTER, 2001

Load-Store Formats

A memory address is 32 bits, so it cannot be directly encoded in
an instruction.

Recall the use of a base register + offset (16-bits) in the load-store
instructions.

Thus, we need an OPCODE, a destination/source register
(destination for load, source for store), a base register, and an
offset.

This sounds very similar to the I-type format... example:
LW  $14, 8($sp) #rl4 is loaded from stack+8
The LW opcode is 35 (0x23)
31 25 20 15

‘35 ‘ 29‘14‘ 8
26 21 16

CSE378

WINTER, 2001

66

68

l-type Example

- Example:
ADDI $a0, $12, 33 #a0<-r12 + 33
» The ADDI opcode is 8, register a0 is register # 4.

31 25 20 15

o Ju]e] s
26 21 16 0

» What would this be in binary? In hex?

CSE378

WINTER, 2001

R-type (register) format

+ General form:

XXX rd, rt, rs

« Arithmetic-logical and comparison instructions require the
encoding of 3 registers, the rest can be used to specify the
OPCODE.

» To keep the format as regular as possible, the OPCODE has a
primary “opcode” and a “function” field.

» We also need 5 bits for the shift-amount, in case of SHIFT
instructions.

« The 16 bits used for the immediate field in the I-type instruction
are split into 5 bits for rd, 5 bits for shift-amount, and 6 bits for
function (the other fields are the same).

31 25 20 15 10 5

‘OPC ‘rs ‘rt ‘rd ‘sht ‘funct‘
26 21 16 11 6 0

CSE378

WINTER, 2001

67

69



R-type Example

SuB $7, $8, $9 #I7<-18-r9

« The opcode for all R-type instructions is zero, the function code for
SUB is 34, the shift amount is zero.

31 25 20 15 10 5

o 8 o |7 o [a |
26 21 16 11 6 0

« What is this in binary/hex?

CSE378 WINTER, 2001

Branch Addressing

« There are 2 kinds of branches:
1. EQ/NEQ family (compares 2 regs for (in)equality), example:
BEQ $14, $8, 1000
2. Compare-to-zero family (compares 1 reg to zero), example:
BGEZ $14, 1000
- Both “families” require OPCODE, rs register, and offset
« (1.) requires an additional register (rt)
« (2.) requires some encoding for (>=, <=, <, >)

31 25 20 15

‘ OPC ‘ rs ‘ rt ‘ offset/4
26 21 /‘16 0
or code (for >, <, etc)
- Note that we divide the offset by 4. Why?

CSE378 WINTER, 2001

70

72

J-type (Jump) Format

» For a jump, we only need to specify the opcode, and we can use
the other bits for an address:

31 25

‘OPC ‘ address
26

« We only have 26 bits for the address, but MIPS addresses are 32
bits long...

 Because the address must reference an instruction, which is a
word address, we can shift the address left by 2 bits (giving us 28
bits). We get the other 4 bits by combining with the 4 high-order
bits of the PC.

CSE378 WINTER, 2001
Branch example
BEQ $14, $8, 1000 # PC := PC+1000 if r14==r8
BGEZ $14, 20 #PC :=PC+20ifrl4>=0
» The opcode for BEQ is 4; for BGEZ is 1, the code for >=is 1
31 25 20 15
‘ 4 ‘ 14 ‘ 8 ‘ 250 ‘
26 21 16 0
31 25 20 15
ERNEEENE |
26 21 16 0
CSE378 WINTER, 2001

71

73



Assembly Language Version

< Recall our running example:

array:

main:

start:

exit:

.data # begin data segment
.space 400 # allocate 400 bytes

text # begin code segment

.globl main # entry point must be global

move $t0, $0 # $t0 is used as counter

la  $t1,array  # $tl is pointer into array
bge $t0, 100, exit# more than 99 iterations?

sw  $t0, O($t1l) # store zero into array

addi $t0, $t0, 1  # increment counter

addi$t1, $t1, 4 # increment pointer into array

j start # goto top of loop
j $ra # return to caller of main...

CSE378

WINTER, 2001

74

Machine Language Version

Encoded:  Machine Ins: Source Ins:

0x00004021 addu $8, $0, $0 ; 9: move$t0, $0
0x3c091001 Ilui $9, 4097 ; 10: la$tl, array
0x29010064 slti $1, $8, 100 ; 11: bge$t0, 100, exit
0x10200005 beq $1, $0, 20

0xad280000 sw $8, 0($9) ; 12: sw$t0, O($t1)
0x21080001 addi $8, $8, 1 ; 13: addi$t0, $t0, 1
0x21290004 addi $9, $9, 4 ; 14: addi$tl, $t1, 4
0x0810000b j 0x0040002c ; 15: jstart
0x03e00008 jr $31 ; 16: j$ra

CSE378

WINTER, 2001

75



