
55

CSE378 WINTER, 2001

Assembly Programming Details

56

CSE378 WINTER, 2001

Writing Assembly Programs
• You generally shouldn’t need to do this, but we spend time

learning it in this course. Why?

• We use an R2000/3000 simulator (SPIM), running on tahiti, fiji,
etc..

• SPIM simulates the execution of R2000/3000 assembly programs.

• Basic guidelines:
1. Use lots of comments

2. Don’t be too fancy, keep it simple

3. Don’t get obsessed with performance

4. Use words (rather than cryptic labels, for instance)

5. Remember: the address of a word is evenly divisible by 4

6. Use lots of comments

57

CSE378 WINTER, 2001

The SPIM Assembler
• Mostly, the SPIM assembler is pretty faithful to the definition of

MIPS assembly language (it only implements a subset of the
assembler directives, and includes macros, for instance).

• Because MIPS instructions and addressing modes are quite
primitive, the assembler provides several mechanisms for making
your programming life easier:

• Relocatable symbols (labels)

• Pseudo-instructions: it looks like a normal machine instruction,
but it isn’t: the assembler converts it into a sequence of lower
level instructions that the machine can execute

• Additional addressing modes

• Macros

58

CSE378 WINTER, 2001

Important Pseudo-instructions
• Some useful pseudo-instructions: (src can be reg or immediate)

mul rd, rs, src move rd, src

bgt rs, src, label bge rs, src, label

blt rs, src, label ble rs, src, label

• Examples:
mul $t1, $t2, $t3 -> mult $t2, $t3

mflo $t1

mul $t1, $t2, 100 -> multi $t2, 1000

mflo $t1

move $t0, $t1 -> add $t0, $t1, $0

blt $t1, $t2, foo -> slt $at, $t1, $t2

bne $at, $0, foo

blt $t1, 32, foo -> subi $at, $t1, 32

bltz $at, foo

• ... plus lots more (see the appendix)

59

CSE378 WINTER, 2001

Summary of Addressing Modes
• Each ISA specifies a number of addressing modes.

• MIPS supports very few addressing modes, namely
1. based/displacement/indexed mode: the address specified by “register
+ 16-bit signed offset” (e.g. LW)

2. register mode: the address is in a register (e.g. JR)

3. immediate mode: the address is a constant in the instruction (e.g. J)

4. PC-relative mode: the address is calculated by “PC + 16-bit signed
offset*4”. (Very similar to base.) (e.g. BEQ)

• If we use relocatable symbols to specify immediate values, the
assembler/linker will do the right the right thing when the program
is relocated.

• We’ll see other addressing modes later, when we look at different
architectures.

60

CSE378 WINTER, 2001

Putting a base address into a register
• Method 1. Leave it up to the assembler:

.data # define program data section

xyz: .word 1 # allocate some space

... # other junk

.text # define program code section

...

lw $5, xyz # loads contents of xyz to r5

• The assembler will generate an instruction something like:
lw $5, offset($gp) # gp is $28, the global ptr

• Method 2: Do it yourself using the LA pseudo-instruction that
loads an address rather than the contents at that address:

la $6, xyz # r6 holds addr of xyz

lw $5, 0($6) # rf contains contents of xyz

61

CSE378 WINTER, 2001

Macros
• Macros are similar to #define macros in C. Example:

Macro: print_int

Inplicit argument: an integer in $a0

Side-effect: modifies $v0

.macro print_int(op)

move $a0, op

li $v0,1

syscall

.end_macro

....

.text

print_int($t0)

...

• In the above code, the assembler will produce:
move $a0, $t0

li $v0, 1

syscall

62

CSE378 WINTER, 2001

SPIM Convention
• SPIM lists memory words from left to right

• Bytes within words are listed from most significant to least
significant (just as we would read/write them)

Memory:

SPIM:
[0x00001000] 0x09000001 0x01000300 0x04050000

byte 0x1003
byte 0x1000

0x1000

0x1004

0x1008

0x01 0x00 0x00 0x09

0x00 0x03 0x00 0x01

0x00 0x00 0x05 0x04

