
CSE378 Susan Eggers 1

Design Tradeoffs

Virtual or physical addressing

Virtually-addressed caches:

• access with a virtual address (index & tag)

• do address translation only on a cache miss

+ faster for hits because no address translation

- need to flush the cache on a context switch or
process identification (PID) as part of the tag

- synonyms

- “the synonym problem”
• if 2 processes are sharing data, two (different) virtual

addresses map to the same physical address

• 2 copies of the same data in the cache

• on a write, only one will be updated; so the other has
old data

+ there are a few solutions (which we won’t study)

CSE378 Susan Eggers 2

Design Tradeoffs

Virtual or physical addressing

Physically-addressed caches

• access with a physical address (index & tag)

• do address translation on every access

- increase in hit time because must translate the virtual address
before access the cache

+ increase in hit time can be avoided if address translation is
done in parallel with the cache access
• access the cache with a virtual index:

restrict cache size so that cache index bits are in the
page offset (virtual index = physical index)

• then can access the TLB with the virtual address bits
• compare the physical tag from the cache to the

physical address (page frame #) from the TLB
• can increase cache size, but still use page offset bits

for the index, by increasing associativity

+ no cache flushing on a context switch

+ no synonym problem

CSE378 Susan Eggers 3

Cache Hierarchy

Cache hierarchy

• different caches with different sizes & access times & purposes

+ decrease effective memory access time:

• many misses in the L1 cache will be satisfied by the L2
cache

• can avoid going all the way to memory

CSE378 Susan Eggers 4

Cache Hierarchy

Level-1 cache

• goal: fast access

• so minimize hit time (the common case)

• small

• so can access it in one CPU cycle
(also there used to be chip real estate constraints)

• virtually-addressed

• so cache accesses can be fast without constraints on cache
size

• direct mapped or set associative?

• direct mapped: faster access
• set associative: better hit ratio

• separate caches for instructions & data

• each is smaller than a unified cache, so the access time is
lower

• can be configured differently

• write-through for the data cache

• less contention for the bus between L1 and L2 caches than
the system bus

• multiprocessors want the L1 and L2 caches to be coherent

CSE378 Susan Eggers 5

Cache Hierarchy

Level-2 cache

• goal: keep traffic off the system bus

• to alleviate the processor-memory bottleneck

• big cache

• so it will have a high hit ratio

• physically-addressed

• enough time to do address translation
• no flushing on a context switch

• direct-mapped

• big direct-mapped caches have almost the same hit ratio as
big set associative caches

• slightly less hardware cost

• unified

• its hit ratio is higher than that of two separate caches (I&D)
half the size

• write-back

• fewer updates to memory

CSE378 Susan Eggers 6

Alpha 21364 Memory Hierarchy

L1 on-chip instruction cache

• 64KB

• 64B block

• variation of 2-way set associative

• virtually-addressed cache: virtual index, virtual tags

• TLB lookup in parallel

L1 on-chip data cache

• 64KB

• 64B block

• 2-way set associative

• virtually-addressed cache: virtual index, physical tags

• 2-bits taken from outside the page offset
• a virtual address can reside in one of four cache

locations, depending on the virtual-to-physical
translation for these bits

• HW guarantees that only one will reside in the cache at
a time

• TLB lookup in parallel

• write-back

CSE378 Susan Eggers 7

Alpha 21264 Memory Hierarchy

L2 on-board cache

• 1MB - 16MB

• low set associative

• 64B block

• physically indexed

• 12-cycle load-to-use latency

TLBs

• separate instruction & data TLBs

• fully-associative

• 128 entries (instruction); 128 entries (data)

• maps 1, 8, 64 or 512 contiguous 8KB pages

• round-robin allocation

• 8-bit PID

• TLB misses handled in software with hardware assists
(special instructions for invalidating TLB entries)

CSE378 Susan Eggers 8

Pentium Pro Memory Hierarchy

L1 on-chip instruction cache

• 8KB

• 32B block

• 4-way set associative

• physically-addressed cache: physical index, physical tags

• TLB lookup in parallel

L1 on-chip data cache

• 8KB

• 32B block

• 2-way set associative

• physically-addressed cache: physical index, physical tags

• TLB lookup in parallel

• write-back

CSE378 Susan Eggers 9

Pentium Pro Memory Hierarchy

L2 on-chip cache

• 256KB

• 4-way set associative

• 32B block

• physically indexed

TLBs

• separate instruction & data TLBs

• 4-way set associative

• 32 entries (instruction); 64 entries (data)

• TLB misses handled in hardware

CSE378 Susan Eggers 10

Measuring Cache Hierarchy Performance

Effective Access Time:

hit timeL1 miss ratioL1 misspenaltyL1•+

hit timeL2 miss ratioL2 misspenaltyL2•+

CSE378 Susan Eggers 11

Comparing Caches & Paging

Timing aspects

• cache miss takes about 6 (L1) to 60 (L2) cycles

• TLB miss takes 100s of cycles

• page fault takes milliseconds (millions of cycles)

How a miss/fault is handled

• cache miss: in hardware

• TLB miss: either in hardware or software
if software, often there is no trap

• page fault: in software
trap to the operating system

Mapping

• caches: direct-mapped or set associative

• TLBs: usually fully associative

• paging: fully associative

CSE378 Susan Eggers 12

Comparing Caches & Paging

Page/block size

• cache block: 8 to 128 bytes

• TLB entry: size of a PTE (typically 4 to 8 bytes)

• page: 4KB - 4MB

Memory update policy

• caches: write-through or write-back to memory

• TLBs: write-back to memory

• pages: write-back to disk

Replacement policy

• TLBs & caches: LRU if 2-way set-associative, but not as
important

• paging: important to be LRU (why?)

All are demand-driven

Be sure you know why all these choices were made!

