
CSE378 Susan Eggers 1

Page Faults

Page fault :

• occurs when a page is not in memory

• valid bit in its PTE is clear

• trap to the operating system to service the page fault

• page fault handler : the software that handles the page fault
(next slide)

Demand paging : bring a page into memory the first time the CPU
references a location in it

CSE378 Susan Eggers 2

Page Faults

What happens on a page fault (high-level view):

• choose a page frame to free (page replacement):

• the algorithm approximates LRU replacement
• reference bit is set on an access to the page

• cleared every once in awhile
• pick a page with a cleared reference bit

• if the dirty bit is set, write the replaced page to disk

• update its PTE (valid bit, dirty bit)

• read the faulting page from disk

• update its PTE

CSE378 Susan Eggers 3

Page Faults

Disk overhead is large (milliseconds)

The implications:

• want to reduce the page fault rate because servicing the page
fault is expensive

• mechanisms for maintaining a low page fault rate:

• pages are at least 4KB to amortize the overhead of
accessing it from disk & to reduce the page fault rate

• fully associative mapping between pages & page frames to
reduce page faults due to page frame conflicts

• write-back disk update policy (disk writes take too long for
write-through)

• optimized page replacement algorithms to minimize page
fault rate

• have lots of time during a page fault because of the long disk
latency

• page fault can be handled in software

• page replacement algorithms can be optimized (i.e., take
time)

• the program that incurred the page fault is descheduled &
another program is scheduled to execute:
called a context switch

CSE378 Susan Eggers 4

Translation Lookaside Buffer

Translation lookaside buffer (TLB)

• is a cache

• contains the most recent virtual-to-physical translations

• HW looks for the physical address in the TLB before checking
the page table

• if it’s there, avoid the memory reference to the page table

• because of locality of reference, it probably will be there!

• TLB configuration

• usually fully-associative or large set-associative
• 4-8 byte blocks

• 32 - 128 entries (if fully associative),
up to 4K if direct-mapped

• can be instruction & data (today) or unified (more in the
past)

• write back
• .5 - 1 cycle hit time, tens of cycles miss penalty

• TLB misses handled in software or hardware or software
with hardware assists

CSE378 Susan Eggers 5

Using a TLB

(1) Access using the virtual page number. Why?

(2) If a hit ,

• concatenate the physical page number & the page offset
bits, to form a physical address

• set the reference bit
• if writing, set the dirty bit

(3) If a miss ,

• get the physical address from the page tables

• evict a TLB entry & update dirty/reference bits in the page
tables

• update the TLB with the new mapping

CSE378 Susan Eggers 6

Using a TLB

TLB (physical) components:

• TLB entry (cache data)

• contents of the PTE: physical page number, dirty bit,
reference bit, protection bits

• TLB tags are process identifiers (PIDs) & virtual page numbers

• PID prevents one process from accessing a TLB entry of
another process

• PID of the currently executing process is stored in a special
register

• TLB tag match: PID register & virtual address tag are
compared to PID & virtual address in TLB tag

• if a PID is not part of the tag match, how else can we prevent
one process from accessing another process’s pages via
the TLB?

• TLB state (valid, dirty bits)

CSE378 Susan Eggers 7

Handling a Memory Reference

CPU emits a VA

TLB lookup

cache

data
to CPU

lookup

cache miss
memory access

page table
access

insert new entry

service the page fault
update PTE of replaced TLB entry
insert new entry into TLB

hit

miss

hit

validmiss

invalid

 into TLB

update PTE of
 replaced TLB entry

CSE378 Susan Eggers 8

Handling a Memory Reference

Special situations

• cannot hit in the TLB & have a page fault

• TLB entry is invalidated when its page is paged out to disk

• cannot hit in the cache when there is a TLB miss and a page fault

• blocks from the page are flushed from the cache when a
paged is paged out to disk

• all other combinations are possible

• see Figure 7.27

CSE378 Susan Eggers 9

Pros & Cons of Paging

Advantages of paging:

• provides a simple memory location model to the programmer

⇒ users do not have to do manual overlays

• not all pages have to be in memory during execution
(demand paging)

⇒ lower program start-up time

• program (virtual) space can be larger than the physical memory

⇒ allows larger programs or lower memory cost

• allows flexible page relocation; pages do not have to be
contiguous (fully-associative)

⇒ low page fault rate

• allows co-location of programs in physical memory without
(external) fragmentation

⇒ full utilization of memory

• allows programs to share pages

⇒ better use of memory

• provides protection of one program from another on a page
basis

CSE378 Susan Eggers 10

Pros & Cons of Paging

Disadvantages of paging:

• address translation via page tables takes time

• paging takes time

