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Page Faults

Page fault :

• occurs when a page is not in memory

• valid bit in its PTE is clear

• trap to the operating system to service the page fault

• page fault handler : the software that handles the page fault
(next slide)

Demand paging : bring a page into memory the first time the CPU
references a location in it
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Page Faults

What happens on a page fault (high-level view):

• choose a page frame to free (page replacement):

• the algorithm approximates LRU replacement
• reference bit is set on an access to the page

• cleared every once in awhile
• pick a page with a cleared reference bit

• if the dirty bit is set, write the replaced page to disk

• update its PTE (valid bit, dirty bit)

• read the faulting page from disk

• update its PTE
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Page Faults

Disk overhead is large (milliseconds)

The implications:

• want to reduce the page fault rate because servicing the page
fault is expensive

• mechanisms for maintaining a low page fault rate:

• pages are at least 4KB to amortize the overhead of
accessing it from disk & to reduce the page fault rate

• fully associative mapping between pages & page frames to
reduce page faults due to page frame conflicts

• write-back disk update policy (disk writes take too long for
write-through)

• optimized page replacement algorithms to minimize page
fault rate

• have lots of time during a page fault because of the long disk
latency

• page fault can be handled in software

• page replacement algorithms can be optimized (i.e., take
time)

• the program that incurred the page fault is descheduled &
another program is scheduled to execute:
called a context switch

CSE378  Susan Eggers 4

Translation Lookaside Buffer

Translation lookaside buffer (TLB)

• is a cache

• contains the most recent virtual-to-physical translations

• HW looks for the physical address in the TLB before checking
the page table

• if it’s there, avoid the memory reference to the page table

• because of locality of reference, it probably will be there!

• TLB configuration

• usually fully-associative or large set-associative
• 4-8 byte blocks

• 32 - 128 entries (if fully associative),
up to 4K if direct-mapped

• can be instruction & data (today) or unified (more in the
past)

• write back
• .5 - 1 cycle hit time, tens of cycles miss penalty

• TLB misses handled in software or hardware or software
with hardware assists
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Using a TLB

(1) Access using the virtual page number. Why?

(2) If a hit ,

• concatenate the physical page number & the page offset
bits, to form a physical address

• set the reference bit
• if writing, set the dirty bit

(3) If a miss ,

• get the physical address from the page tables

• evict a TLB entry & update dirty/reference bits in the page
tables

• update the TLB with the new mapping
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Using a TLB

TLB (physical) components:

• TLB entry (cache data)

• contents of the PTE: physical page number, dirty bit,
reference bit, protection bits

• TLB tags are process identifiers (PIDs) & virtual page numbers

• PID prevents one process from accessing a TLB entry of
another process

• PID of the currently executing process is stored in a special
register

• TLB tag match: PID register & virtual address tag are
compared to PID & virtual address in TLB tag

• if a PID is not part of the tag match, how else can we prevent
one process from accessing another process’s pages via
the TLB?

• TLB state (valid, dirty bits)
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Handling a Memory Reference

CPU emits a VA

TLB lookup
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data
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hit

miss

hit

validmiss

invalid

 into TLB
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Handling a Memory Reference

Special situations

• cannot hit in the TLB & have a page fault

• TLB entry is invalidated when its page is paged out to disk

• cannot hit in the cache when there is a TLB miss and a page fault

• blocks from the page are flushed from the cache when a
paged is paged out to disk

• all other combinations are possible

• see Figure 7.27
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Pros & Cons of Paging

Advantages  of paging:

• provides a simple memory location model to the programmer

⇒ users do not have to do manual overlays

• not all pages have to be in memory during execution
(demand paging)

⇒ lower program start-up time

• program (virtual) space can be larger than the physical memory

⇒ allows larger programs or lower memory cost

• allows flexible page relocation; pages do not have to be
contiguous (fully-associative)

⇒ low page fault rate

• allows co-location of programs in physical memory without
(external) fragmentation

⇒ full utilization of memory

• allows programs to share pages

⇒ better use of memory

• provides protection of one program from another on a page
basis
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Pros & Cons of Paging

Disadvantages of paging:

• address translation via page tables takes time

• paging takes time


