
CSE378 Susan Eggers 1

Memory Hierarchy

Definition:

• several memory components, each of which has different sizes,
speeds & cost per MB

• close to the CPU: small, fast access, high cost
• close to memory: large, slow access, lower cost

Typical memory hierarchies today:

• registers: 32, < half cycle access

• on-chip cache (SRAM): 8KB-64KB, 1-2 cycle access

• board-level cache (SRAM): 128KB-4MB, 6-10 cycles access

• memory (DRAM): 32MB-1.5GB, 40-100 cycles

• disks: 1-12 GB, 10 ms

• archival storage: practically unlimited, not matter

CSE378 Susan Eggers 2

Memory Hierarchy

Problem the memory hierarchy is trying to address:

• the processor-memory bottleneck : the discrepancy between
CPU & memory speeds

• CPU speed increases 55% per year

• DRAM speed increases 9% per year

• rate of increase is also widening

What design principle comes into play here?

How memory hierarchies address this problem:

• keep information that the CPU uses often or will use next in
storage that is close to it

• storage is smaller than memory, and therefore:

• it is faster than memory

• it doesn’t hold much & you need to be smart about what you
store in it

CSE378 Susan Eggers 3

Locality

Principle of locality of reference :

• programs repeatedly access a small portion of their instructions
& data at any one time

• a reason you get benefit from small, demand-driven storage

• temporal locality: code/data that was used in the recent past
will be referenced again soon
examples:

• code:
• data:

• spatial locality: code/data that is near code/data that is
currently being referenced will be referenced soon
examples:

• code:

• data:

Caches are demand-driven :

• load data/instructions into them when they are needed

• once there,
will be used again (temporal locality)
locations brought in at the same time will be used (spatial
locality)

CSE378 Susan Eggers 4

Memory Hierarchies Work!

Memory hierarchies improve performance

• locality of reference

• technology: speed vs. size

⇒ fast access for most references

Both factors are important:

• If you get program and data size down, you can fit it into a small
memory & access it quickly.

• You can get away with a small size because of locality of
reference.

