
CSE378 Susan Eggers 1

Control Implementations

Control unit design:

• Hardwired control

• expressed as a finite state machine (state diagrams &
transitions between states)

• good if the number of states is “small” (RISC architectures)
• implemented with PLAs (programmable logic arrays) &

random logic

• Microprogrammed control

• expressed as a “micro” program
• provides structure & modularity when the number of states

is “large” (CISC architectures)
• implemented with read-only memory (ROM) of simple

instructions (microcode instructions) to drive the signals
needed to execute instructions in the ISA

CSE378 Susan Eggers 2

Finite State Machine

Sequential & combinational logic function that consists of:

• set of inputs

• next state function : maps current state & inputs to a new state

• output function : maps current state (Moore machine) or
current state & inputs (Mealy machine) to a set of outputs

Finite state machine for control:

• state = a step in the execution cycle

• input = opcode & func fields

• output = control signals that drive the datapath

CSE378 Susan Eggers 3

Microprogramming -- Basic Idea

Microprogramming : designing control that implements machine
(architecture) instructions in terms of simpler microinstructions

• microinstruction : specifies the control signals that must be
asserted in a given cycle

• fields in a microinstruction are represented symbolically (just like
assembly language for machine instructions)

• each machine instruction is “interpreted” by a sequence of
microinstructions

• microcode or microprogram : set of all microinstructions that
control processor execution

Implemented by a simple auxiliary datapath & control unit that
generates signals for the main datapath

• “computer within a computer”

• micro datapath fetches microinstructions

• micro control unit sends signals to the main datapath

CSE378 Susan Eggers 4

Microinstruction Encoding

Multiple fields, multiple values per field

• width of field is determined by the number of values

Encoding the microinstruction:

• design so that each field specifies a non-overlapping set of
control signals

• signals that are not asserted together can share the same
field

• don’t put so many signals into the same field that it needs
complex interpretation to get the individual signal values that will
drive the macro datapath

• 2 different style extremes

• horizontal microcode : 1 field for each value
• no decoding
• very wide microinstructions

• vertical microcode :
• very highly encoded
• much narrower microinstructions

• a control signal can’t be set to more than one value in a
microinstruction

• microassembler makes sure that conflicting signals aren’t
generated in a microinstruction

CSE378 Susan Eggers 5

Microsequencing

Choosing the next microinstruction

(1) the next sequential microinstruction

• increment the microPC

(2) begin a new machine instruction

• branch to the microinstruction that controls fetching

(3) have multiple options that depend on some control unit input

• dispatch through a table of microinstruction target
addresses

• R2000 uses this for switching on the opcode

CSE378 Susan Eggers 6

Block Diagram

microcode

datapath
control
signals

microPC

address select
logic

adder

1

inputs from
opcode

CSE378 Susan Eggers 7

Microcode for R2000

Label
ALU

Control
SRC

1
SRC

2
Register
control

Memory
PCWrite
control

Sequen-
cing

fetch add PC 4 read PC ALU seq

add PC extshft read dispatch
1

mem1 add A extend dispatch
2

lw2 read
ALU

seq

write
MDR

fetch

sw2 write
ALU

fetch

rfmt1 func
code

A B seq

write
ALU

fetch

beq1 subt A B ALU-
Out:
cond

fetch

jump1 jump
address

fetch

CSE378 Susan Eggers 8

Pentium Pro

Implementation

• PLA (hardwired) for RISC-like instructions

• microcode for more complex instructions

• ~8000 microinstruction ROM

• microsubroutines (nanocode)

Execution times are similar to RISC machines

• most instructions are RISC-like

CSE378 Susan Eggers 9

A Comparison

Distinctions used to be clearer

• microinstructions in ROM faster than machine instructions in
RAM (memory)

• an argument for CISC also

• microcode could be expressed symbolically

• microcode was easier to express -- hardwired random logic
was too complicated to specify for a CISC architecture

• microcode could be easily changed

• ⇒ new instructions could be easily added

• ⇒ bugs could be easily fixed

• ⇒ specifying the architecture & building the
implementation could go on in parallel

• microcode was more modular

• different ROMs could be used to emulate older
architectures

• microsubroutines could be used

CSE378 Susan Eggers 10

A Comparison

Both have similar performance

• ROM no longer has the big speed advantage over RAM since
instructions are cached

• PLA may be smaller & therefore somewhat faster than a ROM

Both have the same difficulty of design & debugging

• CAD tools allow hardwired control to be specified symbolically

• same difficulty in specifying & debugging control
• same difficulty in adding instructions to an existing ISA

• faster machines provide a more detailed simulation & therefore
fewer bugs

Could probably use multiple PLAs as easily as multiple ROMs to
allow several implementations of the same architecture on the
same machine
(good for backwards compatibility)

Still the case that:

• hardwired control used for simple, regular instructions

• microcode used for complex, variable-length instructions

