Drawbacks of Single-Cycle Implementation

All instructions must complete in 1 cycle (CPI = 1)

« different instructions do different amounts of work,
for example:

« add uses instruction memory, register file, ALU, register file
again

« |w uses instruction memory, register file, ALU, data
memory, register file again

« clock cycle set to the longest instruction

Hardware units can only be used once in the cycle
* some must be replicated (ALU, memory)
* increased hardware costs

CSE378 Susan Eggers 1

Alternative to Single-Cycle Implementation

Have a shorter cycle

« Length of the shorter cycle is determined by the delay of
individual functional units

« Each instruction executes in multiple shorter cycles

Fewer resources if some can be reused in different cycles

CSE378 Susan Eggers 2



Multiple-cycle Implementation

Break up the execution cycle into steps:

@)
@
(©)
4

®)

CSE378

want each step to contain work that takes about the same
amount of time

instructions only use the steps they need

instruction fetch
instruction decode & source register(s) read
ALU execution

memory access (read/write) or ALU completion (write the result
register)
write back register for a load

Susan Eggers 3

Hardware Changes

Add some temporary registers (not visible in the ISA) since some

information that is calculated in one cycle is needed in
subsequent cycles

instruction register (IR)
memory data register (MDR)
ALU source registers, A and B
ALUOut

Data that is calculated in 1 instruction & needed by subsequent

instructions is stored in ISA-visible state (PC, registers, memory)

Larger or more MUXes

MUX to memory address
MUX to ALU source 1
larger MUX to ALU source 2

CSE378 Susan Eggers 4



Instruction Fetch

Actions:

IR <-- Memory[PC]
PC<-PC+4

Implementation registers:

« instruction register: information will be needed in subsequent
cycles

Hardware that is shared in different cycles
* memory (data memory later)
¢ ALU to increment the PC

CSE378 Susan Eggers

Instruction Decode & Source Register(s) Read

Actions:

A <-- Register[IR[25:21]] (read rs)
B<-- Register[IR[20:16]] (read rt)

ALUOuUt <-- PC + sign-extend IR[15:0] << 2
(performed early in case this instructions is a branch)

Implementation registers:
* register A
 register B
both needed as operation source operands in the next cycle
¢ ALUOut for the target address

Hardware that is shared in different cycles
¢ ALU to calculate branch target

CSE378 Susan Eggers 6



ALU Execution

Actions:

« if R-type instruction
ALUOut<--AopB

« if data transfer instruction
ALUOUL <-- A + sign-extend (IR[15:0])

« if branch instruction (& successful)
if (A == B) PC <-- ALUOut
(this is the value of ALUOut computed on the last cycle;
the previous datapath picture doesn't illustrate this)

Implementation registers:
« ALUOut passes the target address from the last step

Hardware that is shared in different cycles
* ALU

CSE378 Susan Eggers

Memory Access or Write an ALU Result

Actions:
« if load instruction
memory data register (MDR) <-- Memory[ALUOut]
« if store instruction
Memory[ALUOut] <-- B
« if R-type instruction
Register[IR[15:11]] <-- ALUOut

Implementation registers:
« MDR
* ALUOuUt

Hardware that is shared in different cycles

* ALU
* Memory

CSE378 Susan Eggers



Load Completion

Actions:
Register[IR[20:16]] <-- Memory data register (MDR)

CSE378 Susan Eggers 9

Performance Example

Multiple-cycle implementation has better performance because each
instruction takes only as many cycles as it needs

Example:
¢ cycles per instruction
loads: 5, stores: 4, R-type: 4, branches: 3
¢ percentage in total instructions
loads: 22%, stores: 11%, R-type: 50%, branches: 17%
¢ both implementations have the same number of instructions
* CPlgingle =5
o CPlyyyi = 5*.22 + 4*.11 + 4*50 + 3*.17 = 4.05
e speedup =5/4.05=1.2

CSE378 Susan Eggers 10



Multiple-cycle Implementation: Control

Control is more complex than in a single-cycle implementation
« need to define control signals for each step
¢ need to know which step we're on

Two implementations for the control unit
 hardwired control
» specified as a finite state machine (FSM)
e microprogramming

* expressed as a “micro” programming language

Both specifications can be synthesized into hardware

CSE378 Susan Eggers 11

Instruction Fetch

Set the MUX so that the PC is the memory address:
=0

Set signal
Set signal
Set the MUX for ALU source 1 to be from the PC:

=0
Set the MUX for ALU source 2 to be from the constant 4:

=01
Set ALUcontrol to “+":

=00

Set the MUX for input to the PC to be from the ALU:
=00

Set

Why do we need a signal to write the IR?

The ALU result is also stored in ALUout: why does this not matter?

The PC can be incremented & the memory accessed for an
instruction during the same cycle: why can this be done?

CSE378 Susan Eggers 12



Instruction Decode & Read Source Register(s)

Set the MUX for ALU source 1 to be from the PC:
=0

Set the MUX for ALU source 2 to be from the sign-extended, shifted

immediate:
=11
Set ALUcontrol to “+":
=00

When are temporary registers A and B written?

What if this turns out not to be a branch instruction?

CSE378 Susan Eggers

Execute

13

Which control signals are generated depends on the opcode
 data transfer

» Set the MUX for ALU source 1 to be from register A:

=1

« Setthe MUX for ALU source 2 to be from the sign-extended

immediate:
=10
¢ Set ALUcontrol to “+":
=00
¢ R-type

« Set the MUX for ALU source 1 to be from register A:

=1

¢ Set the MUX for ALU source 2 to be from register B:

=00
« Set ALUcontrol to the func field operation:
=10

CSE378 Susan Eggers

14



Execute

 conditional branch
« Set the MUX for ALU source 1 to be from register A:
=1
« Set the MUX for ALU source 2 to be from register B:
=00
* Set ALUcontrol to “-":
=01
¢ Set signal which will update the PC if Zero is
asserted

¢ Set the MUX for input to the PC to be from ALUOut (holds
the target address that was computed in the last cycle):

=01
(note that the PC is written twice for taken conditional
branches)
* jump
« Set the MUX for input to the PC to be from the jump
address:
=10
e Set
CSE378 Susan Eggers 15

Data Memory Access & Register Write

Which control signals are generated depends on the opcode

* load
e Set
« Set the MUX so that the memory address comes from the
ALU:
=1
* store
* Set
¢ Set the MUX so that the memory address comes from the
ALU:
=1

Where is the value that is to be written?

¢ R-type
« Set the MUX to choose the rd field as the write register:
=1
e Set

« Set the MUX to choose the ALU output as the data to write:
=0

CSE378 Susan Eggers 16



Register Write from a Load

Which control signals are generated depends on the opcode
* load

« Set the MUX to choose the rt field as the write register:

=0
e Set

* Set the MUX to choose the MDR as the data to write:
=1

CSE378 Susan Eggers

17



