
CSE378 Susan Eggers 1

 Performance Metrics

Why study performance metrics?

• determine the benefit/lack of benefit of designs

• computer design is too complex to intuit performance &
performance bottlenecks

• have to be careful about what you mean to measure & how you
measure it

What you should get out of this discussion

• good metrics for measuring computer performance

• what they should be used for

• what metrics you shouldn’t use & how metrics are misused

CSE378 Susan Eggers 2

Performance of Computer Systems

Many different factors to take into account when determining
performance:

• Technology

• circuit speed (clock, MHz)

• processor technology (how many transistors on a chip)

• Organization

• type of processor (RISC or CISC)
• configuration of the memory hierarchy

• type of I/O devices

• number of processors in the system

• Software

• quality of the compilers
• organization & quality of OS, databases, etc.

CSE378 Susan Eggers 3

“Principles” of Experimentation

Meaningful metrics

execution time & component metrics that explain it

Reproducibility

machine configuration, compiler & optimization level, OS, input

Real programs

no toys, kernels, synthetic programs

SPEC is the norm (integer, floating point, graphics, webserver)

TPC-B, TPC-C & TPC-D for database transactions

Simulation

long executions, warm start to mimic steady-state behavior

usually applications only; some OS simulation

simulator “validation” & internal checks for accuracy

CSE378 Susan Eggers 4

Metrics that Measure Performance

Raw speed : peak performance (never attained)

Execution time : time to execute one program from beginning to end

• the “performance bottom line”

• wall clock time, response time

• Unix time function: 13.7u 23.6s 18:27 3%

Throughput : total amount of work completed in a given time

• transactions (database) or packets (web servers) / second

• an indication of how well hardware resources are being used

• good metrics for chip designers or managers of computer
systems

(Often improving execution time will improve throughput & vice
versa.)

Component metrics : subsystem performance, e.g., memory
behavior

• help explain how execution time was obtained

• pinpoints performance bottlenecks

CSE378 Susan Eggers 5

Execution Time

Processor A is faster than processor B, i.e.,

Relative Performance

performance of A is n times greater than B

execution time of B is n times longer than A

PerformanceA
1

ExecutionTimeA
--=

ExecutionTimeA ExecutionTimeB<

PerformanceA PerformanceB>

PerformanceA

PerformanceB
--

ExecutionTimeB

ExecutionTimeA
-- n==

CSE378 Susan Eggers 6

CPU Execution Time

The time the CPU spends executing an application

• no memory effects

• no I/O

• no effects of multiprogramming

Cycle time (clock period) is measured in time or rate

• clock cycle time = 1/clock cycle rate

• clock cycle rate of 1 MHz ⇒ cycle time of 1 µs
• clock cycle rate of 1 GHz ⇒ cycle time of 1 ns

CPUExecutionTime CPUClockCycles clockCycleTime×=

CPUExecutionTime
CPUClockCycles
clockCycleRate

--=

CSE378 Susan Eggers 7

CPI

Average number of clock cycles per instruction

• throughput metric

• component metric, not a measure of performance

• used for processor organization studies, given a fixed compiler
& ISA

Can have different CPIs for classes of instructions
e.g., floating point instructions take longer than integer
instructions

where CPIi = CPI for a particular class of instructions

where Ci = the number of instructions of the ith class that

have been executed

Improving part of the architecture can improve a CPIi

• Talk about the contribution to CPI of a class of instructions

CPUClockCycles NumberOfInstructions CPI×=

CPUClockCycles CPIi Ci×()
1

n

∑=

CSE378 Susan Eggers 8

CPU Execution Time

To measure:

• execution time: depends on all 3 factors

• time the program

• number of instructions: determined by the ISA

• programmable hardware counters
• profiling

• count number of times each basic block is executed
• instruction sampling

• CPI: determined by the ISA & implementation

• simulator: interpret (in software) every instruction &
calculate the number of cycles it takes to simulate it

• clock cycle time: determined by the implementation & process
technology

Factors are interdependent:

• RISC: increases instructions/program, but decreases CPI &
clock cycle time because the instructions are simple

• CISC: decreases instructions/program, but increases CPI &
clock cycle time because many instructions are more complex

CPUExecutionTime
numberOfInstructions CPI× clockCycleTime×

=

CSE378 Susan Eggers 9

Metrics Not to Use

MIPS (millions of instructions per second)

- instruction set-dependent (even true for similar architectures)

- implementation-dependent

- compiler technology-dependent

- program-dependent

+ intuitive: the higher, the better

MFLOPS (millions of floating point operations per second)

+ FP operations are independent of FP instruction implementation

- different machines implement different FP operations

- different FP operations take different amounts of time

- only measures FP code

static metrics (code size)

instruction count

execution time 10
6×

-- clock rate

CPI 10
6×

------------------------=

floating point operations

execution time 10× 6

CSE378 Susan Eggers 10

Means

Measuring the performance of a workload

• arithmetic : used for averaging execution times

• harmonic : used for averaging rates

• weighted means: the programs are executed with different
frequencies, for example:

timei
i 1=

n

∑

 1

n
---×

n

1
ratei

i 1=

n

∑
-------------------- 1

arithmeticMean
--=

timei weight× i
i 1=

n

∑

 1

n
---×

CSE378 Susan Eggers 11

Means

Computer C is ~25 times faster than A when measuring execution
time

Still true when measuring MFLOPS (a rate) with the harmonic mean

FP Ops Time (secs)

Computer A Computer B Computer C

program 1 100 1 10 20

program 2 100 1000 100 20

total 1001 110 40

arith mean 500.5 55 20

FP Ops Rate (FLOPS)

Computer A Computer B Computer C

program 1 100 100 10 5

program 2 100 .1 1 5

harm mean .2 1.5 5

arith mean 50.1 5.5 5

CSE378 Susan Eggers 12

Speedup

Amdahl’s Law :

Performance improvement from speeding up a part of a
computer system is limited by the proportion of time the
enhancement is used.

speedup
execution timebeforeImprovement

execution timeafterImprovement
---=

