
CSE378 Spring 2001 1

What is Computer Architecture?

Architecture

• abstraction of the hardware for the programmer

• instruction set architecture

• instructions:
• operations
• operands, addressing the operands
• how instructions are encoded

• storage locations for data
• registers: how many & what they are used for
• memory: its size & how it is accessed

• I/O devices & how to access them

• software conventions:
• subroutine calls: who saves the registers, which ones

are saved
• passing parameters: in registers? on the stack?

• the interface between the software & hardware

CSE378 Spring 2001 2

What is Computer Organization?

Organization or Microarchitecture

• basic components of a computer

• on the CPU (ALU, registers, PC, etc.)

• memory (levels of the cache hierarchy)

• how they operate

• how they are connected together

Organization is mostly invisible to the programmer

• today some components are considered part of the
architecture

• why? because a programmer can get better performance if he/
she knows the structure

• for example: the caches, the pipeline structure

CSE378 Spring 2001 3

Separate Architecture & its Organization

Why separate architecture & organization?

• many implementations for 1 architecture

family of implementations: sequences of machines that
have the same ISA

• IBM 360/85, 360/91, 370s
• MIPS R2000, R3000, R10000
• Intel x86, Pentium, Pentium-Pro
• DEC Alpha 21064, 21164, 21264

⇒ different points in the cost/performance curve

⇒ binary compatible: same software could run on all
machines

⇒ open architecture: third party software

CSE378 Spring 2001 4

Different Architectures

So why have different architectures?

• different architecture philosophies & therefore different styles

• support high level language operations: CISC

• support basic primitive operations: RISC

• different application areas
for example, multimedia instructions

• “ours is better” within the same style

CSE378 Spring 2001 5

Basic Architectural Design Principles

Design for the common case

common cases in hardware, uncommon cases in software

• basic floating point operations in hardware
software function for the cosine routine

• memory access in hardware
trap to software for a page fault

Smaller is faster
must have a good reason for adding an instruction, register, etc.

• memory hierarchy: registers, caches, main memory

Keep it simple, stupid : the KISS principle
simplicity favors regularity, regularity leads to smaller designs
and shorter design time

• RISC instructions are all 32 bits

Good design demands compromise

• trade-off in instruction format between
- the size of the register file (how many bits are needed to
specify a register) &
- the number of operations (how many bits are needed to
specify an instruction)

• trade-off between register size & cycle time

CSE378 Spring 2001 6

Assembly Language

Symbolic form of computer machine language

• advantages for us

• learn at the machine level what a computer does
• thorough understanding through a hands-on experience

• where assembly language is used in practice

• things that aren’t expressible in a high-level language
for example, subroutine linkage

• privileged tasks
for example, programs that need access to protected
registers (I/O)

• size-critical applications
for example, programs for embedded processors

• time-critical applications
for example, real-time applications, OpenGL library

• why assembly language is not widely used

• lower programmer productivity
for example, longer coding time, more debugging

• compilers can produce almost the same quality code
• not portable across architectures

CSE378 Spring 2001 7

Still Lower

Implementation

• design of organizational components or microarchitecture

Technology

• semiconductor material
for example, silicon

• circuit technology (how build gates from transistors)
for example, CMOS

• packaging
for example, pin-grid array

• generation
for example, vacuum tubes, VLSI

CSE378 Spring 2001 8

A Simplified Machine Model

system bus

GPR

PC

integer
functional

units

FP
functional

unitsFP
regs

control

status

instruction
cache

data
cache

level 2
cache

main memory
I/O

