Loading Constants into a Register

If the constant will fit into 16 bits, use li (load immediate)
i $14,8 #3$14=8

 liis a pseudoinstruction for something like:

addi $14,%$0,8

or

or $14,%0,8

If the constant does not fit into 16 bits, use wi (load upper
immediate)

- lui puts a constant in the most significant halfword
lui rt, immed # rt<31,16> = immed

#rt<15,0>=0
- addi (or ori) puts a constant into the least significant halfword

Example: load the constant 0x1b236723 into $t0
lui $t0,0x1b23

ori $t0,$t0,0x6723

isaRest

Getting the Base Address into a Register

Method 1: address is a value in memory

data # define the data section
XYZ: .word 1 # store the value 1 here

some other data

text # define the code section

. # lines of code

lw $5,xyz # loads contents of xyz into $5
(the assembler generates w $5,offset($gp))

Method 2: use 1a & the symbolic name for the location
 loads an address rather than the contents of the address
 lais a pseudoinstruction, but lui followed by addi
« example:

la $6,xyz # $6 contains the address of memory
location xyz

lw $5,0($6) # $5 contains the contents of memory
location xyz

Method 3: the address is a constant & you know what it is

o usei (if <+ 32K)
o use i and addi (Or ori) otherwise

isaRest

Masking with Logical Instructions

Use masks
. to extract smaller information units from a word

« to set certain bits to 0 or 1 while retaining other bits as they
are

Example: create a mask of all 1's for the low-order byte of $6 ---
don’t care about the other bits

ori $6,$6,0x000000ff # set $6<7:0>to 1's

Example: use a mask to clear the high-order byte of $6 but leave
the 3 other bytes the same

lui $5,0x000000ff # set $5<23:16>to 1's,
$5<31:24> and the other
bits to 0’s

ori $5,%5,0x0000ffff # set $5<15:0>to 1's

and $6,%$6, $5 # clear the high-order byte

isaRest

Shifting
Arithmetic shifts to the right: the sign bit is extended
Logical shifts & arithmetic shifts to the left: zeros are shifted in

Examples:
$5 contains: 1111 1111 0000 0000 0000 0000 0000 0000
srl $5,%$5,6 # shift right logical 6 bits
$5 = 0000 0011 1111 1100 0000...
sra $5,%$5,6 # shift right arithmetic 6 bits

#$5=1111 1111 1111 1100 0000...

isaRest

HI & LO

Used for holding the product of a multiply (multiplying two 32-bit
numbers may yield a 64-bit product)

 HI gets the upper 32 result bits
« LO gets the lower 32

Used for the quotient and remainder of a divide
« LO gets the quotient
 HI gets the remainder

 if an operand is negative, the remainder is not specified by
the MIPS architecture

Instructions to move between HI/LO & the GPRs.

mfhi rd # move from HlI to rd
mflo rd # move from LO to rd
mthi rd # move to HI from rd
mtlo rd # move to LO from rd
mul rd,rs,rt # a pseudoinstruction for
mult rs, it

mflo rd

isaRest

Addressing Modes

A function to calculate the address of an operand
operand specifier vs. operand

MIPS has few (RISC again)

register addressing
« operand specifier is a register number
« operand is the register contents

Immediate addressing

 operand specifier/operand is a constant in the
instruction stream

base or displacement addressing

e operand specifier is a register contents plus a constant
in the instruction

« operand is the contents of the memory location whose
address is that specifier

isaRest

Addressing Modes

o PC-relative addressing

operand specifier is the contents of the PC plus a
constant in the instruction

operand is the instruction at the memory location whose
address is that specifier

* pseudodirect addressing

isaRest

operand specifier is the address in the jump instruction

operand is the instruction at the memory location whose
address is that specifier concatenated with the upper
bits of the PC & 2 low-order 0s

Addressing Modes

User-generated addressing modes:
* register, immediate, displacement, pseudodirect

Compiler & assembler-generated addressing modes
« PC-relative
« example:

loop: Iw $8, offset($9)

bne $8, $21, exit # 2 instructions
add $19,$19,20
j loop # -4 instructions

exit:

+ need fewer bits to specify the operand address
+ position-independent code : can load anywhere in memory

« why programmers don’'t use PC-relative

bne $8, $21, 2($pc)
If you insert additional code here, you

isaRest

Other Addressing Modes

Indexed addressing
 use 2 registers as the operand specifier

e lw $t1, $s1, $s2 # $t1 gets Memory[$s1+$s2]
e inMIPS : add $s0, $s1, $s2
lw $t1, 0($s0)

Update addressing
 increment the memory address as part of a data transfer
e autoincrement, autodecrement
« useful when marching through an array

e lwu $t1, 0($s0) # $t1 gets Memory[$s0];
$s0=%s0 + 4
e inMIPS : Iw $t1, 0($s0)

addi $s0, $s0, 4

isaRest

A Longer Example

High-level language version

int a[100];
int i;
for (i=0; i<100; i++) {
afi] = 5;
}

Assembly language version
* base address of array a in $15
« $8 contains the value of i, $9 the value 5

add $8,%$0,$0 # initialize i

I $9,5 # $9 has the constant 5
loop:

sla $10,%$8,2 # $10 has i in bytes

addu $14,$10,$15 # address of a]i]

sw $9,0($14) # store 5in a]i]

addiu $8,$8,1 # increment |

blt $8,100,loo0p # branch if loop not finished

isaRest

A Longer Example

Machine-language version generated by a compiler

[0x00400020] 0x00004020 add $8,$0,$0
[0x00400024] 0x34090005 ori $9,$0,55
[0x00400028] 0x34010004 ori $1,$0,4
[0x0040002¢] 0x01010018 mult $8,$1
[0X00400030] 0x00005012 mflo $10
[0x00400034] 0x014f7021 addu $14,$10,$15
[0X00400038] 0xadc90000 sw $9,0($14)
[0x0040003c] 0x25080001 addiu $8,$8,1
[0x00400040] 0x2010064 slti $2,$8,100

[0x00400044] 0x1420fff9 bne $2,$0,-28

isaRest

[0x00400020]
[0x00400024]
[0x00400028]
[0x0040002c]
[0x00400030]
[0x00400034]
[0x00400038]
[0x0040003c]
[0x00400040]
[0x00400044]

isaRest

A Longer Example

Machine-language version generated by a compiler

0x00004020
0x34090005
0x34010004
0x01010018
0x00005012
0x014f7021
Oxadc90000
0x25080001
0x2010064
0x1420fff9

add $8,$0,$0 ; same

ori $9,%0,5 i $9,5

ori $1,%$0,4 ; sla $10,$8,2
mult $8,$1 ;. (loop head)
mflo $10

addu $14,$10,%$15; same

sw $9,0($14) ; same

addiu $8,%$8,1 ; same

slti $2,$8,100 ; blt $8,100,Loop
bne $2,$0,-28

Assembly Language Programming
or
How to be Nice to Your TA

« Use lots of detailed comments
« Don’t be too fancy

« Use lots of detailed comments
« Use words whenever possible
« Use lots of detailed comments

« Remember that the address of a word is evenly divisible by
4

. Use lots of detailed comments
« The word following the word at address is at address + 4.
. Use lots of detailed comments

isaRest

