Loading Constants into a Register

If the constant will fit into 16 bits, use li (load immediate)
i $14,8 #3$14=8

 liis a pseudoinstruction for something like:

addi $14,%$0,8

or

or $14,%0,8

If the constant does not fit into 16 bits, use wi (load upper
immediate)

- lui puts a constant in the most significant halfword
lui rt, immed # rt<31,16> = immed

#rt<15,0>=0
- addi (or ori) puts a constant into the least significant halfword

Example: load the constant 0x1b236723 into $t0
lui $t0,0x1b23

ori $t0,$t0,0x6723
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Getting the Base Address into a Register

Method 1: address is a value in memory

data # define the data section
XYZ: .word 1 # store the value 1 here

# some other data

text # define the code section

. # lines of code

lw  $5,xyz # loads contents of xyz into $5
(the assembler generates w  $5,offset($gp) )

Method 2: use 1a & the symbolic name for the location
 loads an address rather than the contents of the address
 lais a pseudoinstruction, but lui followed by addi
« example:

la $6,xyz # $6 contains the address of memory
location xyz

lw  $5,0($6) # $5 contains the contents of memory
location xyz

Method 3: the address is a constant & you know what it is

o usei (if <+ 32K)
o use i and addi (Or ori) otherwise
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Masking with Logical Instructions

Use masks
. to extract smaller information units from a word

« to set certain bits to 0 or 1 while retaining other bits as they
are

Example: create a mask of all 1's for the low-order byte of $6 ---
don’t care about the other bits

ori $6,$6,0x000000ff # set $6<7:0>to 1's

Example: use a mask to clear the high-order byte of $6 but leave
the 3 other bytes the same

lui $5,0x000000ff # set $5<23:16>to 1's,
# $5<31:24> and the other
# bits to 0’s

ori $5,%5,0x0000ffff # set $5<15:0>to 1's

and $6,%$6, $5 # clear the high-order byte
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Shifting
Arithmetic shifts to the right: the sign bit is extended
Logical shifts & arithmetic shifts to the left: zeros are shifted in

Examples:
$5 contains: 1111 1111 0000 0000 0000 0000 0000 0000
srl $5,%$5,6 # shift right logical 6 bits
# $5 = 0000 0011 1111 1100 0000...
sra $5,%$5,6 # shift right arithmetic 6 bits

#$5=1111 1111 1111 1100 0000...
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HI & LO

Used for holding the product of a multiply (multiplying two 32-bit
numbers may yield a 64-bit product)

 HI gets the upper 32 result bits
« LO gets the lower 32

Used for the quotient and remainder of a divide
« LO gets the quotient
 HI gets the remainder

 if an operand is negative, the remainder is not specified by
the MIPS architecture

Instructions to move between HI/LO & the GPRs.

mfhi rd # move from HlI to rd
mflo rd # move from LO to rd
mthi rd # move to HI from rd
mtlo rd # move to LO from rd
mul rd,rs,rt # a pseudoinstruction for
mult rs, it

mflo rd
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Addressing Modes

A function to calculate the address of an operand
operand specifier vs. operand

MIPS has few (RISC again)

register addressing
« operand specifier is a register number
« operand is the register contents

Immediate addressing

 operand specifier/operand is a constant in the
instruction stream

base or displacement addressing

e operand specifier is a register contents plus a constant
in the instruction

« operand is the contents of the memory location whose
address is that specifier
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Addressing Modes

o PC-relative addressing

operand specifier is the contents of the PC plus a
constant in the instruction

operand is the instruction at the memory location whose
address is that specifier

* pseudodirect addressing
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operand specifier is the address in the jump instruction

operand is the instruction at the memory location whose
address is that specifier concatenated with the upper
bits of the PC & 2 low-order 0s



Addressing Modes

User-generated addressing modes:
* register, immediate, displacement, pseudodirect

Compiler & assembler-generated addressing modes
« PC-relative
« example:

loop: Iw $8, offset($9)

bne $8, $21, exit # 2 instructions
add $19,$19,20
j loop # -4 instructions

exit:

+ need fewer bits to specify the operand address
+ position-independent code : can load anywhere in memory

« why programmers don’'t use PC-relative

bne $8, $21, 2($pc)
If you insert additional code here, you

isaRest



Other Addressing Modes

Indexed addressing
 use 2 registers as the operand specifier

e lw $t1, $s1, $s2 # $t1 gets Memory[$s1+$s2]
e inMIPS : add $s0, $s1, $s2
lw $t1, 0($s0)

Update addressing
 increment the memory address as part of a data transfer
e autoincrement, autodecrement
« useful when marching through an array

e lwu $t1, 0($s0) # $t1 gets Memory[$s0];
$s0=%s0 + 4
e inMIPS : Iw $t1, 0($s0)

addi $s0, $s0, 4
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A Longer Example

High-level language version

int a[100];
int i;
for (i=0; i<100; i++) {
afi] = 5;
}

Assembly language version
* base address of array a in $15
« $8 contains the value of i, $9 the value 5

add $8,%$0,$0 # initialize i

I $9,5 # $9 has the constant 5
loop:

sla $10,%$8,2 # $10 has i in bytes

addu $14,$10,$15 # address of a]i]

sw $9,0($14) # store 5in a]i]

addiu $8,$8,1 # increment |

blt $8,100,loo0p # branch if loop not finished
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A Longer Example

Machine-language version generated by a compiler

[0x00400020] 0x00004020 add $8,$0,$0
[0x00400024] 0x34090005 ori $9,$0,55
[0x00400028] 0x34010004 ori $1,$0,4
[0x0040002¢] 0x01010018 mult $8,$1
[0X00400030] 0x00005012 mflo $10
[0x00400034] 0x014f7021 addu $14,$10,$15
[0X00400038] 0xadc90000 sw $9,0($14)
[0x0040003c] 0x25080001 addiu $8,$8,1
[0x00400040] 0x2010064 slti $2,$8,100

[0x00400044] 0x1420fff9 bne $2,$0,-28
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[0x00400020]
[0x00400024]
[0x00400028]
[0x0040002c]
[0x00400030]
[0x00400034]
[0x00400038]
[0x0040003c]
[0x00400040]
[0x00400044]
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A Longer Example

Machine-language version generated by a compiler

0x00004020
0x34090005
0x34010004
0x01010018
0x00005012
0x014f7021
Oxadc90000
0x25080001
0x2010064
0x1420fff9

add $8,$0,$0 ; same

ori $9,%0,5 i $9,5

ori $1,%$0,4 ; sla $10,$8,2
mult $8,$1 ;. (loop head)
mflo $10

addu $14,$10,%$15; same

sw $9,0($14) ; same

addiu $8,%$8,1 ; same

slti $2,$8,100 ; blt $8,100,Loop
bne $2,$0,-28



Assembly Language Programming
or
How to be Nice to Your TA

« Use lots of detailed comments
« Don’t be too fancy

« Use lots of detailed comments
« Use words whenever possible
« Use lots of detailed comments

« Remember that the address of a word is evenly divisible by
4

. Use lots of detailed comments
« The word following the word at address is at address + 4.
. Use lots of detailed comments
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