
isaRest

Loading Constants into a Register
If the constant will fit into 16 bits, use li (load immediate)

li $14,8 # $14 = 8

• li is a pseudoinstruction for something like:

addi $14,$0,8

or

or $14,$0,8

If the constant does not fit into 16 bits, use lui (load upper
immediate)

- lui puts a constant in the most significant halfword
lui rt, immed # rt<31,16> = immed

rt<15,0> = 0

- addi (or ori) puts a constant into the least significant halfword

Example: load the constant 0x1b236723 into $t0
lui $t0,0x1b23

ori $t0,$t0,0x6723

isaRest

Getting the Base Address into a Register
Method 1: address is a value in memory

.data # define the data section

xyz: .word 1 # store the value 1 here

... # some other data

.text # define the code section

... # lines of code

lw $5,xyz # loads contents of xyz into $5

(the assembler generates lw $5,offset($gp))

Method 2: use la & the symbolic name for the location

• loads an address rather than the contents of the address

• la is a pseudoinstruction, but lui followed by addi

• example:

la $6,xyz # $6 contains the address of memory
location xyz

lw $5,0($6) # $5 contains the contents of memory
location xyz

Method 3: the address is a constant & you know what it is

• use li (if < ± 32K)

• use lui and addi (or ori) otherwise

isaRest

Masking with Logical Instructions
Use masks

• to extract smaller information units from a word

• to set certain bits to 0 or 1 while retaining other bits as they
are

Example: create a mask of all 1’s for the low-order byte of $6 ---
don’t care about the other bits

ori $6,$6,0x000000ff # set $6<7:0> to 1’s

Example: use a mask to clear the high-order byte of $6 but leave
the 3 other bytes the same

lui $5,0x000000ff # set $5<23:16> to 1’s,
$5<31:24> and the other
bits to 0’s

ori $5,$5,0x0000ffff # set $5<15:0> to 1’s

and $6,$6,$5 # clear the high-order byte

isaRest

Shifting
Arithmetic shifts to the right: the sign bit is extended

Logical shifts & arithmetic shifts to the left: zeros are shifted in

Examples:

$5 contains: 1111 1111 0000 0000 0000 0000 0000 0000

srl $5,$5,6 # shift right logical 6 bits

$5 = 0000 0011 1111 1100 0000...

sra $5,$5,6 # shift right arithmetic 6 bits

$5 = 1111 1111 1111 1100 0000...

isaRest

HI & LO
Used for holding the product of a multiply (multiplying two 32-bit
numbers may yield a 64-bit product)

• HI gets the upper 32 result bits

• LO gets the lower 32

Used for the quotient and remainder of a divide

• LO gets the quotient

• HI gets the remainder

• if an operand is negative, the remainder is not specified by
the MIPS architecture

Instructions to move between HI/LO & the GPRs.

mfhi rd # move from HI to rd

mflo rd # move from LO to rd

mthi rd # move to HI from rd

mtlo rd # move to LO from rd

mul rd,rs,rt # a pseudoinstruction for

mult rs,rt

mflo rd

isaRest

Addressing Modes
A function to calculate the address of an operand

operand specifier vs. operand

MIPS has few (RISC again)

• register addressing
• operand specifier is a register number
• operand is the register contents

• immediate addressing
• operand specifier/operand is a constant in the

instruction stream

• base or displacement addressing
• operand specifier is a register contents plus a constant

in the instruction
• operand is the contents of the memory location whose

address is that specifier

isaRest

Addressing Modes
• PC-relative addressing

• operand specifier is the contents of the PC plus a
constant in the instruction

• operand is the instruction at the memory location whose
address is that specifier

• pseudodirect addressing
• operand specifier is the address in the jump instruction
• operand is the instruction at the memory location whose

address is that specifier concatenated with the upper
bits of the PC & 2 low-order 0s

isaRest

Addressing Modes
User-generated addressing modes:

• register, immediate, displacement, pseudodirect

Compiler & assembler-generated addressing modes

• PC-relative

• example:

loop: lw $8, offset($9)

bne $8, $21, exit # 2 instructions

add $19,$19,20

j loop # -4 instructions

exit:

+ need fewer bits to specify the operand address

+ position-independent code : can load anywhere in memory

• why programmers don’t use PC-relative

bne $8, $21, 2($pc)

If you insert additional code here, you must change the
hardcoded displacement...... Ack!

isaRest

Other Addressing Modes
Indexed addressing

• use 2 registers as the operand specifier

• lw $t1, $s1, $s2 # $t1 gets Memory[$s1+$s2]

• in MIPS : add $s0, $s1, $s2

lw $t1, 0($s0)

Update addressing

• increment the memory address as part of a data transfer
• autoincrement, autodecrement

• useful when marching through an array

• lwu $t1, 0($s0) # $t1 gets Memory[$s0];
$s0 = $s0 + 4

• in MIPS : lw $t1, 0($s0)

addi $s0, $s0, 4

isaRest

A Longer Example
High-level language version

int a[100];

int i;

for (i=0; i<100; i++) {

a[i] = 5;

}

Assembly language version

• base address of array a in $15

• $8 contains the value of i, $9 the value 5

add $8,$0,$0 # initialize i

li $9,5 # $9 has the constant 5

loop:

sla $10,$8,2 # $10 has i in bytes

addu $14,$10,$15 # address of a[i]

sw $9,0($14) # store 5 in a[i]

addiu $8,$8,1 # increment i

blt $8,100,loop # branch if loop not finished

isaRest

A Longer Example
Machine-language version generated by a compiler

[0x00400020] 0x00004020 add $8,$0,$0

[0x00400024] 0x34090005 ori $9,$0,55

[0x00400028] 0x34010004 ori $1,$0,4

[0x0040002c] 0x01010018 mult $8,$1

[0x00400030] 0x00005012 mflo $10

[0x00400034] 0x014f7021 addu $14,$10,$15

[0x00400038] 0xadc90000 sw $9,0($14)

[0x0040003c] 0x25080001 addiu $8,$8,1

[0x00400040] 0x2010064 slti $2,$8,100

[0x00400044] 0x1420fff9 bne $2,$0,-28

isaRest

A Longer Example
Machine-language version generated by a compiler

[0x00400020] 0x00004020 add $8,$0,$0 ; same

[0x00400024] 0x34090005 ori $9,$0,5 ; li $9,5

[0x00400028] 0x34010004 ori $1,$0,4 ; sla $10,$8,2

[0x0040002c] 0x01010018 mult $8,$1 ; (loop head)

[0x00400030] 0x00005012 mflo $10

[0x00400034] 0x014f7021 addu $14,$10,$15; same

[0x00400038] 0xadc90000 sw $9,0($14) ; same

[0x0040003c] 0x25080001 addiu $8,$8,1 ; same

[0x00400040] 0x2010064 slti $2,$8,100 ; blt $8,100,Loop

[0x00400044] 0x1420fff9 bne $2,$0,-28

isaRest

Assembly Language Programming
or

How to be Nice to Your TA
• Use lots of detailed comments

• Don’t be too fancy

• Use lots of detailed comments

• Use words whenever possible

• Use lots of detailed comments

• Remember that the address of a word is evenly divisible by
4

• Use lots of detailed comments

• The word following the word at address is at address + 4.

• Use lots of detailed comments

