
isaOverview

MIPS

MIPS is a “computer family”

• R2000/R3000 (32-bit)

• R4000/4400 (64-bit)

• R8000 (for scientific & graphics applications)

• R10000 (64-bit)

MIPS originated as a Stanford research project
Microprocessor without Interlocked Pipe Stages

MIPS was bought by Silicon Graphics (SGI) & is now independent

MIPS is a RISC

isaOverview

MIPS Registers
Part of the state of a process

Thirty-two 32-bit general purpose registers (GPRs): $0, $1, ...,
$31

• integer arithmetic

• address calculations

• temporary values

By convention software uses different registers for different
purposes (next slide)

A 32-bit program counter (PC)

Two 32-bit registers HI and LO used specifically for multiply and
divide

• HI & LO concatenated for the product

• LO for the quotient; HI for the remainder

Thirty-two 32-bit registers: $f0, $f1, ..., $f31 used for floating-point
arithmetic

• often used as 16 64-bit registers for double precision FP

Other special-purpose registers (later)

isaOverview

MIPS Register Names and gcc Conventions
Register Name Use Comment

$0 zero always 0 cannot be written
$1 $at reserved for

assembler
don’t use it!

$2, $3 $v0, $v1 function return
$4 - $7 $a0 - $a3 pass first 4 procedure/

function arguments
$8 - $15 $t0 - $t7 temporaries caller saved (callee uses

them without saving them)
$16 - $23 $s0 - $s7 temporaries callee saved (caller

assumes they will be avail-
able on function return)

$24, $25 $t8, $t9 temporaries caller saved
$26, $27 $k0, $k1 reserved for the OS don’t use them!

$28 $gp pointer to global static
memory

points to the middle of a
64KB block in static data
(next slide)

$29 $sp stack pointer points to the last allocated
stack location(next slide)

$30 $fp frame pointer points to the activation
record (later)

$31 $ra procedure/function
return address

isaOverview

Memory Usage
A software convention

text segment : the code

data segment

• static data : objects whose size is known to the compiler &
whose lifetime is the whole program execution

• dynamic data : objects allocated as the program executes
(malloc)

stack segment : FIFO process-local storage

0x00000000

0x04000000

0x10000000

0x7fffffff

Reserved

Code

static data

dynamic
data

stack

isaOverview

MIPS Load-Store Architecture
Most instructions compute on operands stored in registers

• load data into a register from memory

• compute in registers

• the result is stored into memory

For example,
a = b + c

d = a + b

is “compiled” into:

load b into register $x

load c into register $y

$z <= $x + $y

store $z into a

$z <= $z + $x

store $z into d

isaOverview

MIPS Information Units
Data types and sizes

• byte

• half-word (2 bytes)

• word (4 bytes)

• float (4 bytes using single-precision floating-point format)

• double (8 bytes using double-precision floating-point format)

Memory is byte-addressable

A data type must start on an address evenly divisible by its size in
bytes

isaOverview

Big & Little Endian
Every word starts at an address that is divisible by 4.
Which byte in the word is byte 0?
How is the data in. byte 0,1,2,3 stored?

Big-endian: 0x10f14201 is stored in memory as:

0: 0x10
1: 0xf1
2: 0x42
3: 0x01

Can be read as: 0x10*2^24 + 0xf1*2^16 + 0x42*2^8 +0x01*2^0

Most significant byte is the lowest byte address.
Word is addressed by the byte address of themost significant byte.

Little-endian: 0x10f14201 is stored in memory as:

0: 0x01
1: 0x42
2: 0xf1
3: 0x10

Can be read as: 0x01*2^0 + 0x42*2^8 + 0xf1*2^16 +0x10*2^24

Least significant byte is the lowest byte address.
Word is addressed by the byte address of theleastsignificant byte.

isaOverview

Moving between Big & Little Endian

Big to Little or Little to Big:

Start with item size and reverse each 1/2
Go to each 1/2 and recurse

For example:
0: 0x10
1: 0xf1
2: 0x42
3: 0x01

Reverse 1/2
0: 0x42
1: 0x01
2: 0x10
3: 0xf1

Recursivelly Reverse 1/2
0: 0x01
1: 0x42
2: 0xf1
3: 0x10

isaOverview

Can detect in C/C++ the native endian of the machine:

if (((short)"AB") == 5680) return (big); else return(little);

Why does this work?

isaOverview

MIPS Information Units
MIPS support both big- and little-endian byte orders

SPIM uses the byte order of the machine its running on

• Intel: little-endian

• Alpha, SPARC, Mac: big-endian

Words in SPIM are listed from left to right, but byte addresses are

little-endian within a word

[0x7fffebd0] 0x00400018 0x00000001 0x00000005 0x00010aff

0x7fffebd2 0x7fffebd4 0x7fffebde

