Control Unit

CPU hardware that controls instruction execution
» sends signals to the datapath to operate it

» specifies what operations to perform, what data to move, when
to move it, where to move it

control

Control Signals

Many control signals driven by the instruction

[opcode] [rs][rt][rd][shamt] [func] R-type
[opcode] [rs][rt][displacement] I-type
[opcode] | address] J-type

Regularity of the MIPS formats

* opcode always in bits 31-26 (Op[5-0])
. are always rs & rt

. always rs

. always bits 15-0

control

Our R2000 Control Signals

Register file

 register write signal: RegWrite asserted for R-type instructions &
load

 register destination field: RegDst rt, rd
 results value: MemToReg loaded value, R-type instruction result
« all generated by the opcode

ALU

 type of the second operand: register, immediate

* generated by the opcode

* ALU operation: add, subtract, and, or, set-on-less-than

» generated by a small control unit
 inputs: opcode & func field
o output: ALU operation

« examples:
lw/sw => add
beq => subtract
R-type instruction => func value

control

Our R2000 Control Signals

Memory
* read signal: MemRead

« write signal: MemWrite
* both generated by the opcode

Branch control

 new PC value:
incremented PC, target address

* generated by the opcode AND’d with Zero

Jump control

 new PC value:
incremented PC or target address, jump address

* generated by the opcode

control

Changing the Implementation

How should you approach a problem in which you had to redesign
the implementation to include another instruction?

 What does the instruction do?
 What parts of the datapath does it need?

« Can it use what is there already?

 What new logic or registers does it need?
 How is the datapath activated?

 What control lines does it need

 Where should the control lines come from?

control

