
control

Control Unit
CPU hardware that controls instruction execution

• sends signals to the datapath to operate it

• specifies what operations to perform, what data to move, when
to move it, where to move it

control

Control Signals

Many control signals driven by the instruction

[opcode] [rs][rt][rd][shamt][func] R-type

[opcode] [rs][rt][displacement] I-type

[opcode] [address] J-type

Regularity of the MIPS formats

• opcode always in bits 31-26 (Op[5-0])

• source registers are always rs & rt

• base register always rs

• branch offset always bits 15-0

control

Our R2000 Control Signals
Register file

• register write signal: RegWrite asserted for R-type instructions &
load

• register destination field: RegDst rt, rd

• results value: MemToReg loaded value, R-type instruction result

• all generated by the opcode

ALU

• type of the second operand: ALUSrc register, immediate
• generated by the opcode

• ALU operation: ALUOp add, subtract, and, or, set-on-less-than
• generated by a small control unit

• inputs: opcode & func field
• output: ALU operation
• examples:

lw/sw => add
beq => subtract
R-type instruction => func value

control

Our R2000 Control Signals
Memory

• read signal: MemRead

• write signal: MemWrite
• both generated by the opcode

Branch control

• new PC value: PCSrc
incremented PC, target address
• generated by the opcode AND’d with Zero

Jump control

• new PC value: Jump
incremented PC or target address, jump address

• generated by the opcode

control

Changing the Implementation
How should you approach a problem in which you had to redesign

the implementation to include another instruction?

• What does the instruction do?

• What parts of the datapath does it need?
• Can it use what is there already?
• What new logic or registers does it need?

• How is the datapath activated?
• What control lines does it need
• Where should the control lines come from?

