
perf

Performance Metrics

Why study performance metrics?

• determine the benefit/lack of benefit of designs

• computer design is too complex to intuit performance &
performance bottlenecks

• have to be careful about what you mean to measure & how
you measure it

What you should get out of this discussion

• good metrics for measuring computer performance

• what they should be used for

• what metrics you shouldn’t use & how metrics are misused



perf

Performance of Computer Systems
Many different factors to take into account when determining
performance:

• Technology
• circuit speed (clock, MHz)
• processor technology (how many transistors on a chip)

• Organization
• type of processor (ILP)
• configuration of the memory hierarchy
• type of I/O devices
• number of processors in the system

• Software
• quality of the compilers
• organization & quality of OS, databases, etc.



perf

“Principles” of Experimentation

Meaningful metrics

execution time & component metrics that explain it

Reproducibility

machine configuration, compiler & optimization level, OS, input

Real programs

no toys, kernels, synthetic programs

SPEC is the norm (integer, floating point, graphics, webserver)

TPC-B, TPC-C & TPC-D for database transactions

Simulation

long executions, warm start to mimic steady-state behavior

usually applications only; some OS simulation

simulator “validation” & internal checks for accuracy



perf

Metrics that Measure Performance
Raw speed : peak performance (never attained)

Execution time : time to execute one program from beginning to
end

• the “performance bottom line”

• wall clock time, response time

• Unix time function: 13.7u 23.6s 18:27 3%

Throughput : total amount of work completed in a given time
• transactions (database) or packets (web servers) / second

• an indication of how well hardware resources are being used

• good metrics for chip designers or managers of computer
systems

(Often improving execution time will improve throughput & vice
versa.)

Component metrics : subsystem performance, e.g., memory
behavior

• help explain how execution time was obtained

• pinpoints performance bottlenecks



perf

Execution Time

Performancea = 1 / (Execution Timea)

Processor A is faster than processor B, i.e.,

Execution TimeA < Execution TimeB

PerformanceA > PerformanceB

Relative Performance

PerformanceA / PerformanceB

= n

= ExecutionTImeB / ExecutionTimeA

performance of A is n times greater than B

execution time of B is n times longer than A



perf

CPU Execution Time
The time the CPU spends executing an application

• no memory effects

• no I/O

• no effects of multiprogramming

CPUExecutionTime = CPUClockCycles * ClockCycleTime

Cycle time (clock period) is measured in time or rate

• clock cycle time = 1/clock cycle rate

CPUExecutionTime = CPUClockCycles / ClockCycleRate

• clock cycle rate of 1 MHz = cycle time of 1 µs
• clock cycle rate of 1 GHz = cycle time of 1 ns



perf

CPI

CPUClockCycles = NumberOfInstructions * CPI

Average number of clock cycles per instruction

• throughput metric

• component metric, not a measure of performance

• used for processor organization studies, given a fixed compiler
& ISA

Can have different CPIs for classes of instructions
e.g., floating point instructions take longer than integer
instructions

∑ ×=
n

ii CCPIclesCPUClockCy
1

)(

where CPIi = CPI for a particular class of instructions

where Ci = the number of instructions of the ith class that have
been executed

Improving part of the architecture can improve a CPIi

• Talk about the contribution to CPI of a class of instructions



perf

CPU Execution Time

CPUExecutionTime =
numberofInstructions * CPI * clockCycleTime

To measure:

• execution time: depends on all 3 factors
• time the program

• number of instructions: determined by the ISA
• programmable hardware counters
• profiling

• count number of times each basic block is executed
• instruction sampling

• CPI: determined by the ISA & implementation
• simulator: interpret (in software) every instruction &

calculate the number of cycles it takes to simulate it

• clock cycle time: determined by the implementation & process
technology

Factors are interdependent:

• RISC: increases instructions/program, but decreases CPI &
clock cycle time because the instructions are simple

• CISC: decreases instructions/program, but increases CPI &
clock cycle time because many instructions are more complex



perf

Metrics Not to Use

MIPS (millions of instructions per second)

instruction count / execution time*10^6 =
clock rate / (CPI * 10^6)

- instruction set-dependent (even true for similar architectures)

- implementation-dependent

- compiler technology-dependent

- program-dependent

+ intuitive: the higher, the better

MFLOPS (millions of floating point operations per second)

floating point operations / (execution time * 10^6)

+ FP operations are independent of FP instruction
implementation

- different machines implement different FP operations

- different FP operations take different amounts of time

- only measures FP code

static metrics (code size)



perf

Means
Measuring the performance of a workload

• arithmetic : used for averaging execution times

n
time

n

i
i

1

1

×







∑

=

• harmonic : used for averaging rates ("the average of", as
opposed to "the average statistic of")









∑

=

p

i irate

p

1

1

• weighted means: the programs are executed with different
frequencies, for example:

n
weighttime i

n

i
i

1

1

×






 ×∑
=



perf

Means

FP Ops Time (secs)

Computer A Computer B Computer C
program 1 100 1 10 20
program 2 100 1000 100 20
total 1001 110 40
arith mean 500.5 55 20

FP Ops Rate (FLOPS)

Computer A Computer B Computer C
program 1 100 100 10 5
program 2 100 .1 1 5

harm mean .2 1.5 5
arith mean 50.1 5.5 5

Computer C is ~25 times faster than A when measuring execution
time

Still true when measuring MFLOPS(a rate) with the harmonic mean



perf

Speedup

Speedup = Execution TimebeforeImprovement /

ExecutionTimeafterImprovement

Amdahl’s Law :

Performance improvement from speeding up a part of a
computer system is limited by the proportion of time the
enhancement is used.


