

Further Floating Facts

Floating point is well understood: IEEE 754 FP Standard Single precision -- one word representation of fp Double precision -- two word representation of fp Range --

Single: 2.0 x 10⁻³⁸ through 2.0 x 10³⁸ Double: 2.0 x 10⁻³⁰⁸ through 2.0 x 10³⁰⁸ MSB of normalized mantissa not represented: 24, 53 bits Zero is represented as 000...0, i.e. it has no implied MSB FP has the property that when a
b as signed magnitude numbers then a
b as floating point numbers

- Signed exponents would complicate comparisons
- In biased notation the most negative number is 000...0₂ and the most positive is 111...1₂
- Since the single precision exponent field is 8 bits, allowing 256 different configurations, the bias for sp fp is 127
 - +2 is presented as 2+127 = 129 = 1000 0001
 - -2 is represented as -2+127 = 125 = 0111 1101
- The bias for double precision is 1023
- The formula: (-1)^{sign*}(1+mantissa)*2^(exponent-bias)

Example Representations

- Find floating point for 5.125
 - 5.125 = 5 + 0.125 = 5 + 1/8 = 5 + 1*2⁻³
 - $= 101_2 + .001_2 = 101.001$
 - Normalize: 101.0012*20 ---> 1.01001*22
 - Thus 5.125 = (-1)^{0*1}+.0100 1000 0... * 2¹²⁹
- · In reverse, what floating point number is
 - (-1)^{1*}(1.0111 000 0...)*2¹³⁰
 - In birary scientific notation it is -1.0111*23
 - Reducing the exponent to 0 yields -1011.1₂
 - = -(11₁₀ + 2⁻¹⁾ = -(11₁₀ + 1/2) = -11.5₁₀

Adding Floating Point Numbers

- Requires that the binary points be aligned
- Equivalent to having the same exponent ... shift the mantissa of the smaller right, raising its exponent

 $\begin{array}{l} 1.000^{*}2^{\cdot1}+1.011^{*}2^{2} \quad (0.5+5.5)\\ \text{Shift smaller right: } 1.000x2^{\cdot1}{=}0.100x2^{0}{=}0.0100x2^{1}{=}0.001x2^{2}\\ \text{Add: } 1.011^{*}2^{2}+0.001^{*}2^{2}=1.100^{*}2^{2}\\ \text{Renormalize: } 1.100^{*}2^{2}\dots\text{ it's OK}\\ \text{Result: } 1.100^{*}2^{2}\end{array}$

⁰ Snyder, 2000 All rights reser

Floating Point Instructions

- There are 32 fp registers: \$f0, \$f1, ... \$f31
 The even numbered registers are used for sp
 An even/odd pair is used for dp, with the odd numbered register holding the lsb mantissa bits
- Special load/store instructions move fp data to/fro mem • 1.s, s.s, 1.d, s.d
- Arithmetic operations (R-type) come in sp/dp forms • add.s, add.d, sub.s, sub.d, mul.s, mul.d
- Comparisons make direct tests and set a condition bit
 c.le.s, c.lt.s, c.eq.s, c.ne.s, c.gt.s, c.ge.s
 c.le.d, c.lt.d, c.eq.d, c.ne.d, c.gt.d, c.ge.d
- Branch if true, bclt, and branch if false, bclf

° Snyder, 2000 All rights re

To Infinity and Beyond

IEEE 754 reserves certain representations for extreme conditions:

Single		Double		
Exp	Signif	Exp	Signif	Meaning
0	0	0	0	Zero
0	nonzero	0	nonzero	+/- unnormal
1-25	4 anything	1-2046	anything	+/- floating p
255	5 0	2047	0	+/- infinity
255	5 nonzero	2047	nonzero	NaN

° Snyder, 2000 All rights reserve