Completing the ALU Design

Adding functionality to an ALU involves incorporating new logic into the existing design cleanly.

32-Bit ALU
Basic design:
add, sub, and, or, slt and zero test
Placement In ALU

![Diagram showing placement in ALU](image)

Final Algorithm

- Place multiplier in low side of product register

```
start
prod[0]=1
prod[0]=0

Add mult’d to lhs of prod & place result in lhs of prod reg

Shift the prod. reg. right 1 bit

32nd repeat
< 32

end
```

### Mult’d	Product
0110 | 0000 0101
0110 | 0110 0101
0110 | 0011 0010
0110 | 0011 1001
0110 | 0111 1001
0110 | 0011 1100
0110 | 0001 1110
0110 | 0001 1100
Add Multiply/Divide Registers

- Single bit for hi and lo

Construct a coherent register

- Chain hi/lo together

What are the "end" inputs?
Revise Design For Initialization

- Set lo to b, set hi to zero

Set-up Addition Inputs

- Hi becomes b operand
Set-up for Just Shift

- The a operand is either a or zero
Move from Hi/Lo

Multiply

- The multiply operation does not reference the op mux
- Mult fires-up the control logic to perform the multiply
 - It first strobes init and write to initialize the register
 - It sets prod to 1
 - It iteratively sets Shift and write 32 times