
What do you think? Work with a partner(s):
Given:

What do these
commands do?

CSE 374 Lecture GIT
Version control and Git

Review: Regex
/[a-zA-Z_\-]+@(([a-zA-Z_\-])+\.)+[a-zA-Z]{2,4}/

regular expression ("regex"): describes a pattern of text

● can test whether a string matches the expr's pattern
● can use a regex to search/replace characters in a string
● very powerful, but tough to read

regular expressions occur in many places:

● text editors (Sublime, Vim, etc.): allow regexes in search/replace
● languages: JavaScript; Java Scanner, String split
● Unix/Linux/Mac shell commands (grep, sed, find, etc.)
● The site regexr is useful for testing a regex

3Sed example for phone number reformatting

https://regexr.com/

What is version
control?

Software system that
keeps records of files,
changes-to-files, and
manages sharing them
between collaborators.

Subversion, perforce, mercurial,
cvs, sourcesafe, git

Why is version control?

1. Backups. Archives a project to keep a safe copy.
2. Collaboration. Keeps a shared copy of project that all

collaborators can access and update. Manages
concurrent and maybe conflicting changes.

3. Version log. Keeps copies of previous versions so
collaborators can revert if necessary.
Notes: Not language or coding specific; version control is used for all types of documents.

Alternate Models

Distributed System Centralized System

Linus Torvalds
The creator of both Linux and Git!
● Linus → Linux

Git was originally created in 2005 for the sole
purpose of continuing development of Linux.
● Linux was originally written in 1991.
● The old version control system revoked

its free license for Linux

Git is the most popular version control
system, with approximately ~95% of
developers using it. 7

Repository
A repository, commonly referred to as
a repo is a location that stores a copy of
all files.

Synonymous to the root directory in a
file system (i.e. ʻ/ʼ).

8

Repository Do’s and Don’ts
What is stored inside of a repository?
● Source code files (i.e. .c files, .java files, etc)
● Build files (Makefiles, build.xml)
● Images, general resources files

What should NOT be stored inside of a repository (generally)
● Object files (i.e. .class files, .o files)
● Executable binary files (executable scripts are OK!)

More on these types of files when we start with C next week!

Sharing Changes
● With git, everyone working on the project has a copy of the repository and its

history
○ Everyone has a local copy of the repository, which is what we use to make our

own changes.
○ We share changes by pushing and pulling

10

Central Git Repository
Keep an "origin" copy of the repo on a Git server
● The remote repository is the defacto central

repository

Each user clone the repo to create a local copy

A user make changes, add and commit those to
their copy and push to save them in the remote
repository

All users pull from the central server periodically
to get changes (instead of from each other).

11

Git Commands git init, git clone, git add, git commit,
git pull, git push, git status, …

The “git" Command
● The git command is the primary way of interacting with git
● You must cd into the folder where your repo is stored, or any subfolder within it
● Used like any other shell command!

14

Git Commands
Command Operation

git clone url [dir] Copy a Git repository so you can add to it

git add file Adds file contents to the staging area

git commit Records a snapshot of the staging area

git status View the status of your files in the working directory and staging area

git diff Shows diff of what is staged and what is modified but unstaged

git help [command] Get help info about a particular command

git pull Fetch from a remote repo and try to merge into the current branch

git push Upload your local commits to the remote repository/server

Creating a Git Repo
Two common scenarios (only do one of these):

1. To create a new local Git repo in your current directory:
 git init

● This will create a .git directory in your current directory.
● Then you can commit files in that directory into the repo.

2. To clone a remote repo to your current directory:

git clone url [localDirectoryName]
● This will create the given local directory, containing a working copy of the files

from the repo, and a .git directory.

What is a "commit"?
● A commit is a single set of changes made to your repository
● Also records:

○ The name of the author
○ The date and time
○ A commit message: short sentence describing what that commit did

● Identified by an ID, or "SHA"

17

Commit Messages
● Commit messages are the way you remind yourself and tell others what you did
● Commit messages should be descriptive

○ E.g. "Added test for predicting null string"
○ not "changed test"

● Commit messages should be short/medium length
○ If you want to know exactly what code was changed, you can check the full

changes.

18

Commit History
● A repository's history is a series of

"commits"
● Each commit makes changes to the

files in the repo
● Commit history serves as a log of the

changes everyone made
● git log to view the commit history

Commit early and often!

19

20Source: XKCD

Add and commit a file
The first time we ask a file to be tracked, and every time before we commit a file, we
must add it to the staging area:

git add path/to/file.txt

● Takes a snapshot of these files, adds them to the staging area so it will be part of
the next commit.

● Example: git add hello.c goodbye.c
○ Adds / stages all of the files in the current directory: git add .

To move staged changes into the local repo, we commit:

git commit –m "<message>"

Viewing changes
To view status of files in working directory and staging area:

git status or git status –s (short version)
● Lists the files which you have changed but not yet committed
● Indicates how many commits have made but not yet pushed

To see what is modified but unstaged: git diff

To see a list of staged changes: git diff --cached

To see a log of all changes in your local repo: git log or git log --oneline
(shorter version). Press q to exit.

File mv or rename

● Once files have been committed to gitlab repository:
git mv files

git rm files

○ git will make changes locally then update the remote
GitLab repo when you push

 ~ If you use regular shell mv/rm commands, git will give you all sorts of
interesting messages when you run git status and you will have to clean up

Gitlab remote use: sharing changes

● Good practice – update with remote changes:
git pull
○ Also do this any time you want to merge changes pushed by your

partner
● Test, make any needed changes, do git add / git commit to get everything

cleaned up locally
● When ready, push accumulated changes to server

git push
● If push blocks because there are newer changes on server, do a git pull,

accept any merge messages, cleanup, add/commit/push again

git pull

Collaborating

Collaboration: Ideal
● A "linear" history

○ Alice makes a commit and pushes
○ Bob pulls, makes a change, commits the

change, and pushes
○ Alice pulls, makes a change, commits, and

pushes
○ ...etc.

28

A

B

C

Collaboration: Reality
● We said the "commit history" is a list of commits,

so what happens here?
○ Charlie makes a change and creates commit

C, but doesn't push
○ Diane also makes a change and commit D,

and pushes
○ Charlie pulls from the remote repo
○ It's no longer a list! The history has diverged

● Does Charlie just have to delete, pull and start
over?

29

A

B

C D

??

Merging
● A merge commit is a commit which has two "parents"

○ Combines the changes in each
○ Commit "M" includes all of Diane's changes, plus

all of Charlie's

30

A

B

C D

M

How do we merge?
git pull

● Automatically fetches the changes and merges them into yours
● Then, git push

○ This push your local changes to the remote repo

○ Others can now work off of your combined changes

Sometimes, the changes you make will conflict with the changes others make

● e.g. you both edit the same line

● Resolving merge conflicts is more complicated; we will teach the basics here but it
takes a lot of practice - come to OH or post on Ed! 31

Merge conflicts
Git will tell you which files had merge conflicts (use git status to see conflicts), and
the files will be edited to identify the conflict:

Find all such sections, and edit them to the proper state (whichever of the two versions
is newer / better / more correct). You must modify the section to contain the code you
want, then save, add, and commit the merge.

Fixing Mistakes

● Set local repository to the
last commit (forget all
changes that you've
made), you can run git
reset --hard HEAD

● Here "HEAD" refers to the
most recent commit.

● If one of your past commits was BAD, you can undo
it using
git revert

● If the second-to-last commit was bad, you can undo
it by saying
git revert HEAD~1
a. HEAD is the most recent commit and "1" signifies the

one before it. This will create a NEW commit that is
the opposite of the original commit.

● Commits aren't completely static and permanent. If
you make a commit but then realize you forgot one
little thing, you can "amend"/modify your previous
commit
git commit --amend

.gitignore
Git may be used to store any types of
files.

However…

Do not store files that are unnecessary.

● Backup files (like *.swp vim files)

● Files that can be recreated (such as
.o files) should not be added.

● System specific files

.̒gitignoreʼ lists files not to upload to
HEAD. Below is a sample .gitignore file
content:

Ignore vim temporary files
*.swp

Ignore OS X finder info
files
.DS_Store

Ignore built object files
*.o

How do I fix git?!
You will inevitably run into frustrating situations
with git

● Even for experienced users, sometimes you
may accidentally get your git repo into an
undesirable situation

● There is always a way to fix this, although
it's not always obvious how

● Online resources are helpful

○ https://ohshitgit.com/

35

https://ohshitgit.com/

Learning more
● Lots of interesting and useful topics, including:

○ Branching, checkout
○ Resolving merge conflicts, merge tools
○ "Merge requests" (a.k.a. "Pull requests")
○ Rebase

● The web is your friend!
○ Official documentation
○ "Git Book": https://git-scm.com/book/en/v2

36

https://git-scm.com/book/en/v2

P.S. git is
complex!

Three of the top four
most-upvoted questions on
StackOverflow.

Everyone is learning!

37

GitLab

CSE Gitlab
● Github and Gitlab are just websites that store git repos

● You can create a repo on the website and git clone to edit it on your computer
(e.g. laptop, calgary, etc.)

● CSE has its own version of Gitlab where you will be given a repository

○ https://gitlab.cs.washington.edu/cse374-24au-students

○ Weʼll use this to distribute and submit homework assignments

39

https://gitlab.cs.washington.edu/cse374-24wi-students

374: Gitlab
Resources on line -

https://gitlab.cs.washington.edu/help

https://courses.cs.washington.edu/co
urses/cse374/24au/resources/git.html

https://git-scm.com/book/en/v2

https://about.gitlab.com/images/press
/git-cheat-sheet.pdf

Subsequent assignments will ask you to use
gitlab, which provides starter code and allows
you to upload your code and submit it to
gradescope.

Don't store things like .o files and executable
programs that don't belong in a repository.

You must use the provided repository even if
you have separate machines or accounts of
your own that you use for other projects.

You should regularly commit and push
changes you are making on code bases. The
more often you do this, the less work you lose
if things go awry.

https://gitlab.cs.washington.edu/help
https://courses.cs.washington.edu/courses/cse374/20sp/resources/git.html
https://courses.cs.washington.edu/courses/cse374/20sp/resources/git.html
https://git-scm.com/book/en/v2
https://about.gitlab.com/images/press/git-cheat-sheet.pdf
https://about.gitlab.com/images/press/git-cheat-sheet.pdf

Bonus Slides 🎁

Branch
Git supports branches, which are used to split out
a line of work.
● A branch is composed of one or more

commits.
● A repository contains one or more branches.

The main branch is the primary source of truth!
● Default when a repository is created.

repository > branch > commit

HEAD Commit
You will often see references to HEAD,
which is the latest commit.

● Acts like a bookmark

● Every branch has its own HEAD

Display the content of the latest commit:

git show HEAD
Link

https://www.geeksforgeeks.org/git-head/

What is Git?

Repository Access

A repository can be:

● Local: run git commands in repo directory or subdirectory
● Remote: lots of remote protocols supported (ssh, https) depending on

repository configuration
○ Specify user-id and machine
○ Usually need git and ssh installed locally
○ Need authentication (use ssh key with GitLab)

● cse374 uses ssh access to remote GitLab server
● Feel free to experiment with GitLab

Local Additions & Editing

•Edit a file “stuff.c”
•Add file(s) to list to be saved in repo on next commit
 git add stuff.c

•Commit all added changes
 git commit –m “reason/summary for commit”
•Repeat locally until you want to push accumulated commits
to GitLab server to share with partner or for backup…

Git commit -m ‘messages should be useful’

Example Commands

•Update local copy to remote
 git pull
•Make changes
 git add file.c
 git mv oldfile.c newfile.c
 git rm obsolete.c

•Commit changes to local repo
 git commit –m “fixed segfaut in getmem”

Examine changes
 git status (see
uncommitted changed files, or how
to revert changes, etc.)

 git diff file (see
uncommitted changes in file)

 git log (see history of
commits)

•Update GitLab shared repo to
reflect local changes
 git push

.gitignore
Git may be used to store any types of files.

HOWEVER

Do not store files that are unnecessary.

➔ Backup files (like *~ emacs backups)
➔ Files that can be recreated (such as .o

files) should not be added.
➔ System specific files

.̒gitignoreʼ lists files not to upload to HEAD

emacs backup files
*~

OS X finder info files
.DS_Store

built object files
*.o

