P

What do you think?

Work with a partner(s):

Write a command that
creates an alias called
compile, which maps to
the compile command
for 374 C assignments.
What command do you need?

What flags do you need?
Run compile outfile infile



CSE 374 Lecture 9

Declarations, control, printf

Spot check: What is stored by the variable
int *ptrint;

How is it different than what is stored by the variable
int intarry[5];




Hello World in C

=> Compile: gcc hello.c

#include <stdio.h> €@ createsexecutable a.out
P =>» Or: gcc -Wall -std=cll -o
* Compile this file with: hello hello.c
* gcc -o hello hello.c € Wall - turns all warnings on
*/ € Cl11-specifies using C11 standard
int main(int argc, char **argv) libraries
{
printf ("Hello, World!\n"); € Creates executablehello
return O0; => Run: ./a.outor./hello
} € Exitswith ‘0’ (return 0;)

alias compile='gcc -Wall -std=cll -o'



Working memory.

™~

Address ‘0’ Address space: list of bytes addressed in order ~ Address 271’ or 2.1’
Address ‘4’

e Programs are said to have access to this 2°* byte space
o ‘64 bit’ system refers to needing 64 bits to index the space
o Butreally don’t - many other things are also using this space

e Locationin array is the ‘address’ of a byte
e Programs keep track of addresses of each of their pieces of memory
e Accessing unused address causes a ‘segmentation fault’



Pointers

“Point to memaory location” int x = 4; Variable called ‘x’ of type

‘int’ given value of ‘4’

int *xPtr = &x; Variable called ‘xPtr’ of type
‘pointer to an integer’, given
value of the location of ‘X’

int xCopy = *xPtr; Variable called xCopy given
the value stored at the
location pointed to by xPtr

int* noPtr = NULL; variable ‘noPtr correctly set

when location is not yet
known




Pointer Review

Pointers point to an address in memory
&x returns the address

Declare a pointer to a pointer type and it has a
specific type/size of memory:

T *x;0rT* x;0rT * x;0rT*X
(T is atype, xis a variable)

An expression to dereference a pointer
*x (more generally *expression)
Dereference - get the value at the address

Arrays have an implicit pointer type
T = x[n] impliesxisoftypeT*

int var = 349;

int *varptr =

AN

&var,;

varptr \

349

var




Pointer Review int var = 349;

int *varptr = &var;

Pointers point to an address in memory
&x returns the address

How big (how many bytes) is an address?
Declare a pointer to a poin
specific type/size of memo Why’

T *x;orT* x;0orT *
(T is a type, x is a variable)

An expression to derefere

*x (more generally *expression
Dereference - get the value at the address

var

Arrays have an implicit pointer type
T = x[n] impliesxisoftypeT*



Pointer Review int var = 349;

. , , int *varptr = &var;
Pointers point to an address in memory

&x returns the address

Declare a pointer to a pointer
specific type/size of memory:

Why do pointers need a type if they are

just addresses?
T *x;0rT* x;0rT * x;0f
(T is a type, x is a variable)

What can we do with that type?

An expression to dereference z
*x (more generally *expressio
Dereference - get the val

var

Arrays have an implicit pointer type
T = x[n] impliesxisof type T*



Arrays

Contiguous blocks in memory
Declare as

Datatype arr[len]

Has type

Datatype*

Stores the location in memory of the
first value; when arrays are passed
passes this memory location

arr

arr[3] arr[len-1]
arr[len+2]

Danger, Will Robinson!!



Pointers to pointers

Levels of pointers make sense:
l.e.. argv, *argv, **argv
Or:argv, argv[0],
argv[0] [0]
But
& (&p) doesn’t make sense
volid f(int x) {
int*p = &x;
int**q = &p;
// %, P, *P, 4, *q, **q

Integer, pointer to integer, pointer to
pointer to integer

&p is the address of ‘p’,

& (&p) would be the address of the
address of p, but that value isn’t stored
separately anywhere and doesn’t have an
address

Tryusingprintf (“The address
of x is %p\n”, &x);



Strings

No real strings - just arrays of characters.

" " " " " " " " " " " "
[ "h"’ "e"’ "l"’ "l"’ "O", " "’ A , o) , r , l , d , ! , \O ]

Strings terminate with \0 so their length can be determined

char str[] = "hello"; //arraysyntax
char *str2 = "hello"; //pointersyntax
char *arrStr[] = {"ant", "bee"}; //arraycontainingchar*'s

char **arrStrPtr = arrStr; //pointertoan array containingchar*'s
arrStr[0] = "cat";



Pointer arithmetic

e IfphastypeT*orT[] and *phastypeT
e If p pointsto oneitem of type T, p+1 points to a place in memory for

the nextitem of type T
o So, p[0] isone item of type T, p+i = p[i]
e T[] alwayshastypeT*, evenifitisdeclared as T[]

o Implicit array promotion
Result: Arrays are always passed by reference, not by value. (The

information passed is the address of where the values are

stored.)



Arrays

Contiguous blocks in memory
Declare as

Datatype arr[len]

Has type

Datatype*

Stores the location in memory of the
first value; when arrays are passed
passes this memory location

arr

arr+3 arr+(len-1)
arr+(len+2)

Danger, Will Robinson!!



Hello World in C

=> Compile: gcc hello.c

#include <stdio.h> €@ createsexecutable a.out
P =>» Or: gcc -Wall -std=cll -o
* Compile this file with: hello hello.c
* gcc -o hello hello.c € Wall - turns all warnings on
*/ € Cl11-specifies using C11 standard
int main (int argc, char **argv) libraries
{
printf ("Hello, World!\n"); € Creates executablehello
return O0; => Run: ./a.outor./hello
} € Exitswith ‘0’ (return 0;)

alias compile='gcc -Wall -std=cll -o'



What is char "“argv ??

Char - datatype
char* - pointer to a place in memory that stores a char
char™* - pointer to a place in memory that stores pointers to chars
The variables argv hold argc points to char”* ptrs
o Incarray lengths must be sent as separate arguments, as is done
here
Also access valueswithargv[0],argv[1l],....argv[argc—1]



Okay, so, argvlil ?

e Any argv[i] points to a char* (pointer to characters)

e char” - pointer to a place in memory that stores a char or multiple
chars

e If char® points to an array of characters ending in \0 (a zero byte)

e Aka astring!!

e Argv are usually has arguments coded into strings



Arguments

Bash C
#!/bin/bash #include <stdio.h>
echo "0: $O"
for file in "$@"; do int main (int argc, char ** argv) {
echo "Sfile" int k;
done printf ("argc = %d\n", argc);
for (k = 0; k < argc; k++)

while [ $# -gt 0 ] printf ("argv[%d] = %s\n", k, argv[kl]);
do return 0;

echo "sS1" }

shift
done

Printargs .c



// includes for functions & types
defined elsewhere

#include <stdio.h>

#include “localstuff.h"

// symbolic constants

#define MAGIC 42

// global variables (if any)

static int days per month[ ] = { 31, Source Flle

28, 31, 30, ..};
// function prototypes StrUCtu res
// (to handle “declare before use”)
void some later function(char, int);
// function definitions

void do_this( ) { ..}

char *return_ that(char s[ ], int n)

{ .1}

int main(int argc, char ** argv) { .. }




Preprocessor

Pre-processes your C code
before the compiler gets to it.

-> Follows commands prefaced by
"

Includes content of header files

Defines constants and macros

Conditional compilation (not

covered right now)

Vb

R

File inclusion

#include <foo.h>
€ Searches for foo.h in “system include”
directories (/usr/include, etc)

#include “foo.h”
€ Starts by searching in current directory (allows
coder to break project into smaller files)

Include include file’s preprocessed contents
Recursively include all the includes from
original file

Usegcc -1 dirl totell gccto look for
include in dirl

Demo magic.c



Preprocessor Cont. Constants are ALL_CAPS to

differentiate them from other

Define constants variables.

#define PI 3.14 Defined constants will override
#define NULL O // in stdlib variables of the same name used in
#define TRUE 1 the code.

fdefine FALSE 0 Shadow with another #define, or,
And macros #undef

#define min (X, Y) ((X) < (YY) 2 (X)) = (Y))

gcc —e control.c > controlpp



Declarations Cont.

You can put multiple declarations on one line, e.g., int x, y; or int x=0, y;
or int x, y=0;, or ...

But int *x, y; means int *x; int y; - you usually mean (want) int *x, *y;

Common style rule: one declaration per line (clarity, safety, easier to
place comments)

Array types in function arguments are pointers(!)



Definitions

Defines properties of item; this
happens only ONCE, even if the
item is declared more than once.

Linker-error will occur if an item is
used but not defined.

To use something before it is
defined, you must declare it before
you use it (forward declaration).

int count=4
countptr = &count;
int count[3] = {1,2,3};

int adding(int a, int b) {
return (a+b);

void printing (char *str) {
printf ("$s\n", str);



L-values v. R-values

, Right Side
Left Side Eval ; gl th
: valuated to values (the contents
Evaluated to locations (addresses) ==
at the address)

Values may be numbers (or characters) OR addresses
9 = x; // Nonsense, because 9 isn’t a LOCATION
int x = 1; // Stores the VALUE 1 at a LOCATION which has the LABEL x.
x = 2; // Stores the VALUE 2 at the LOCATION x.

int* xPtr = &x; // Stores VALUE of address of x at a LOCATION labelled xPtr.
*xPtr = 3; // Stores VALUE 3 at a LOCATION defined by address stored in xPtr.
int** xx = &(&x);// Nonsense, the r-value needs to resolve to a value.

// &x does indeed represent a value (the address x), but

// &(&x) refers to the address of the address of x -

// which is just a number and not stored anywhere



Definitions

Int *arrspace = myArr;

e Arrays that rely on run-time info
to determine size are
dynamically allocated to the
heap (and declared *array
syntax)

e Define as NULL until otherwise
defined.

THING

https://www.codewithc.com/underst POINTER NULL POINTER

anding-c-pointers-beginners-guide/




Initialization

Memory allocation and initialization are not the same thing

Unlike Java, you MUST provide a value to initialize a bit of
memory

It is possible to access un-initialized bits
unlike Java which sets defaults and checks for initialization
best case scenario: you crash



Arrays

arr

arr[3]

arr[len-1]

int myArr[10];

o User must store length (10).
Int *arrspace = myArr;

o Implicit conversion
myArr[3] is ??

o (Not automatically initialized to

any value.)

Arrays MUST be declared with a
constant length (the compiler needs to
allocate space)
Arrays that rely on run-time info to
determine size are dynamically
allocated to the heap (and declared
*array syntax)



Is your answer more nuanced?

Spot check: What is stored by the variable
int *ptrint;

How is it different than what is stored by the variable
int intarry[5];




