
What do you think? Work with a partner(s):

Write a command that
creates an alias called
compile, which maps to
the compile command
for 374 C assignments.

What command do you need?
What flags do you need?
Run compile outfile infile

CSE 374 Lecture 9
Declarations, control, printf

Spot check: What is stored by the variable
int *ptrint;
How is it different than what is stored by the variable
int intarry[5];

Hello World in C
#include <stdio.h>

/**
 * Compile this file with:
 * gcc -o hello hello.c
 */
int main(int argc, char **argv)
{
 printf("Hello, World!\n");
 return 0;
}

➔ Compile: gcc hello.c
◆ creates executable a.out

➔ Or: gcc -Wall -std=c11 -o
hello hello.c
◆ Wall - turns all warnings on
◆ C11 - specifies using C11 standard

libraries
◆ Creates executable hello

➔ Run: ./a.out or ./hello
◆ Exits with ʻ0ʼ (return 0;)

alias compile='gcc -Wall -std=c11 -o'

Working memory.

 Address space: list of bytes addressed in orderAddress ʻ0ʼ
Address ʻ4ʼ

Address ʻ264-1ʼ or ʻ232-1ʼ

● Programs are said to have access to this 264 byte space
○ ʻ64 bitʼ system refers to needing 64 bits to index the space
○ But really donʼt - many other things are also using this space

● Location in array is the ʻaddressʼ of a byte
● Programs keep track of addresses of each of their pieces of memory
● Accessing unused address causes a ʻsegmentation faultʼ

Pointers
“Point to memory location” int x = 4;

int *xPtr = &x;

int xCopy = *xPtr;

int* noPtr = NULL;

Variable called ʻxʼ of type
ʻintʼ given value of ʻ4ʼ

Variable called ʻxPtrʼ of type
ʻpointer to an integer ,̓ given
value of the location of ʻxʼ

Variable called xCopy given
the value stored at the
location pointed to by xPtr

Variable ʻnoPtrʼ correctly set
when location is not yet
known

Pointer Review

varptr

var

349

Pointers point to an address in memory
&x returns the address

Declare a pointer to a pointer type and it has a
specific type/size of memory:

T *x; or T* x; or T * x; or T*x
(T is a type, x is a variable)

An expression to dereference a pointer
*x (more generally *expression)

Dereference - get the value at the address

Arrays have an implicit pointer type
T = x[n] implies x is of type T*

int var = 349;
int *varptr = &var;

Pointer Review

varptr

var

349

Pointers point to an address in memory
&x returns the address

Declare a pointer to a pointer type and it has a
specific type/size of memory:

T *x; or T* x; or T * x; or T*x
(T is a type, x is a variable)

An expression to dereference a pointer
*x (more generally *expression)

Dereference - get the value at the address

Arrays have an implicit pointer type
T = x[n] implies x is of type T*

int var = 349;
int *varptr = &var;

How big (how many bytes) is an address?

Why?

Pointer Review

varptr

var

349

Pointers point to an address in memory
&x returns the address

Declare a pointer to a pointer type and it has a
specific type/size of memory:

T *x; or T* x; or T * x; or T*x
(T is a type, x is a variable)

An expression to dereference a pointer
*x (more generally *expression)

Dereference - get the value at the address

Arrays have an implicit pointer type
T = x[n] implies x is of type T*

int var = 349;
int *varptr = &var;

Why do pointers need a type if they are
just addresses?

What can we do with that type?

Arrays
Contiguous blocks in memory

Declare as

Datatype arr[len]

Has type

Datatype*

Stores the location in memory of the
first value; when arrays are passed
passes this memory location

 Danger, Will Robinson!!

arr

arr[3] arr[len-1]

arr[len+2]

Pointers to pointers
Levels of pointers make sense:
I.e.: argv, *argv, **argv
Or: argv, argv[0],
argv[0][0]
But
&(&p) doesnʼt make sense
void f(int x) {

int*p = &x;
int**q = &p;
// x, p, *p, q, *q, **q

}

Integer, pointer to integer, pointer to
pointer to integer

&p is the address of ʻp ,̓

&(&p) would be the address of the
address of p, but that value isnʼt stored
separately anywhere and doesnʼt have an
address

Try using printf (“The address
of x is %p\n”, &x);

Strings
No real strings - just arrays of characters.
["h", "e", "l", "l", "o", " ", "w", "o", "r", "l", "d", "!", \0]

Strings terminate with \0 so their length can be determined

char str[] = "hello"; // array syntax
char *str2 = "hello"; // pointer syntax
char *arrStr[] = {"ant", "bee"}; // array containing char*'s
char **arrStrPtr = arrStr; // pointer to an array containing char*'s
arrStr[0] = "cat";

Pointer arithmetic
● If p has type T* or T[] and *p has type T
● If p points to one item of type T, p+1 points to a place in memory for

the next item of type T
○ So, p[0] is one item of type T, p+i = p[i]

● T[] always has type T*, even if it is declared as T[]
○ Implicit array promotion

Result: Arrays are always passed by reference, not by value. (The
information passed is the address of where the values are
stored.)

Arrays
Contiguous blocks in memory

Declare as

Datatype arr[len]

Has type

Datatype*

Stores the location in memory of the
first value; when arrays are passed
passes this memory location

 Danger, Will Robinson!!

arr

arr+3 arr+(len-1)

arr+(len+2)

Hello World in C
#include <stdio.h>

/**
 * Compile this file with:
 * gcc -o hello hello.c
 */
int main(int argc, char **argv)
{
 printf("Hello, World!\n");
 return 0;
}

➔ Compile: gcc hello.c
◆ creates executable a.out

➔ Or: gcc -Wall -std=c11 -o
hello hello.c
◆ Wall - turns all warnings on
◆ C11 - specifies using C11 standard

libraries
◆ Creates executable hello

➔ Run: ./a.out or ./hello
◆ Exits with ʻ0ʼ (return 0;)

alias compile='gcc -Wall -std=c11 -o'

What is char **argv ??
● Char - datatype
● char* - pointer to a place in memory that stores a char
● char** - pointer to a place in memory that stores pointers to chars
● The variables argv hold argc points to char* ptrs

○ In c array lengths must be sent as separate arguments, as is done
here

● Also access values with argv[0], argv[1], …. argv[argc-1]

Okay, so, argv[i] ?
● Any argv[i] points to a char* (pointer to characters)
● char* - pointer to a place in memory that stores a char or multiple

chars
● If char* points to an array of characters ending in \0 (a zero byte)
● Aka a string!!
● Argv are usually has arguments coded into strings

Arguments
Bash

#!/bin/bash
echo "0: $0"
for file in "$@"; do
 echo "$file"
done

while [$# -gt 0]
do
 echo "$1"
 shift
done

C

#include <stdio.h>

int main(int argc, char ** argv) {
 int k;
 printf("argc = %d\n", argc);
 for (k = 0; k < argc; k++)
 printf("argv[%d] = %s\n", k, argv[k]);
 return 0;
}

Printargs .c

Source File
Structures

// includes for functions & types
defined elsewhere
#include <stdio.h>
#include “localstuff.h“
// symbolic constants
#define MAGIC 42
// global variables (if any)
static int days_per_month[] = { 31,
28, 31, 30, …};
// function prototypes
// (to handle “declare before use”)
 void some_later_function(char, int);
// function definitions
void do_this() { … }
char *return_that(char s[], int n)
{ … }
int main(int argc, char ** argv) { … }

Preprocessor
Pre-processes your C code
before the compiler gets to it.

➔ Follows commands prefaced by
ʻ#ʼ

➔ Includes content of header files
➔ Defines constants and macros
➔ Conditional compilation (not

covered right now)

File inclusion

➔ #include <foo.h>
◆ Searches for foo.h in “system include”

directories (/usr/include, etc)
➔ #include “foo.h”

◆ Starts by searching in current directory (allows
coder to break project into smaller files)

➔ Include include fileʼs preprocessed contents
➔ Recursively include all the includes from

original file
➔ Use gcc -l dir1 to tell gcc to look for

include in dir1

Demo magic.c

Preprocessor Cont.
Define constants

#define PI 3.14
#define NULL 0 // in stdlib

#define TRUE 1
#define FALSE 0

And macros

#define min(X, Y) ((X) < (Y) ? (X) : (Y))

Constants are ALL_CAPS to
differentiate them from other
variables.

Defined constants will override
variables of the same name used in
the code.

Shadow with another #define, or,
#undef

gcc -e control.c > controlpp

Declarations Cont.
You can put multiple declarations on one line, e.g., int x, y; or int x=0, y;
or int x, y=0;, or …

But int *x, y; means int *x; int y; – you usually mean (want) int *x, *y;

Common style rule: one declaration per line (clarity, safety, easier to
place comments)

Array types in function arguments are pointers(!)

Definitions
Defines properties of item; this
happens only ONCE, even if the
item is declared more than once.

Linker-error will occur if an item is
used but not defined.

To use something before it is
defined, you must declare it before
you use it (forward declaration).

int count=4

countptr = &count;

int count[3] = {1,2,3};

int adding(int a, int b) {
return (a+b);

}

void printing (char *str){
printf("%s\n", str);

}

Values may be numbers (or characters) OR addresses
9 = x; // Nonsense, because 9 isn’t a LOCATION
int x = 1; // Stores the VALUE 1 at a LOCATION which has the LABEL x.
x = 2; // Stores the VALUE 2 at the LOCATION x.
int* xPtr = &x; // Stores VALUE of address of x at a LOCATION labelled xPtr.
*xPtr = 3; // Stores VALUE 3 at a LOCATION defined by address stored in xPtr.
int** xx = &(&x);// Nonsense, the r-value needs to resolve to a value.
 // &x does indeed represent a value (the address x), but
 // &(&x) refers to the address of the address of x -
 // which is just a number and not stored anywhere

L-values v. R-values
Left Side

Evaluated to locations (addresses)

Right Side
Evaluated to values (the contents
at the address)

Definitions
● Int *arrspace = myArr;
● Arrays that rely on run-time info

to determine size are
dynamically allocated to the
heap (and declared *array
syntax)

● Define as NULL until otherwise
defined.

https://www.codewithc.com/underst
anding-c-pointers-beginners-guide/

Initialization

Memory allocation and initialization are not the same thing

Unlike Java, you MUST provide a value to initialize a bit of
memory

It is possible to access un-initialized bits
unlike Java which sets defaults and checks for initialization
best case scenario: you crash

Arrays
● int myArr[10];

○ User must store length (10).
● Int *arrspace = myArr;

○ Implicit conversion
● myArr[3] is ??

○ (Not automatically initialized to
any value.)

● Arrays MUST be declared with a
constant length (the compiler needs to
allocate space)

● Arrays that rely on run-time info to
determine size are dynamically
allocated to the heap (and declared
*array syntax)

arr

arr[3] arr[len-1]

Is your answer more nuanced?

Spot check: What is stored by the variable
int *ptrint;
How is it different than what is stored by the variable
int intarry[5];

