
What do you think? Work with a partner(s):

What terms do you think
of when you think of C
programming?

CSE 374 Lecture 8
Introduction to C

C v. Java
C

● Lower level (closer to assembly)
● No guaranteed memory safety
● Procedural
● Compiled (not interpreted like bash)
● Conditional controls (if, while)
● Modern syntax (human readable)
● Small standard library

Java

● Higher level (lots of compilation)
● Safe (sand-boxed in jvm, compiled

limits)
● Object Oriented
● Compiled
● Conditional controls (if, while)
● Modern syntax (human readable)
● Large standard library, huge

extended libraries

C v. Scripting
C

● Compiled
● Highly structured, data-typed
● Strings have library processing
● Data structures and libraries
● Good for large complex programs

○ Java, with object-oriented
programming, is even better
for complex programs

Scripting

● Interpreted
● Esoteric variable access
● Everything is a string
● Easy access to files and program
● Good for quick & interactive

programs
○ Do one thing and do it well

C v. Rust
C

● Relies on user management for
memory safety

● C++ Exceptions for error
management

● C++ extensive std::lib
● Extensive legacy code

Rust

● Built in memory-safety
○ Garbage collection

● Designed for thread safetey
● Uses Result-type
● 30 years younger than C++

○ Growing ecosystem

Why C?
➔ C is a fairly compact language - fewer features than Java, but easier to

implement efficiently
➔ Provides lower level (closer to assembly) language
➔ Understanding C can give insight into how computers (and memory) work
➔ Still used for

◆ Embedded programming
◆ Systems programming
◆ High-performance code
◆ GPU Programming

C reference books
The
standard
reference.
Available
on Kindle
and in the
UW
library.

Essential C - Stanford pdf
http://cslibrary.stanford.ed
u/101/EssentialC.pdf

http://www.cplusplus.com/

- OʼReilly books (C in a
Nutshell, etc.), also
through UW library

http://cslibrary.stanford.edu/101/EssentialC.pdf
http://cslibrary.stanford.edu/101/EssentialC.pdf
http://www.cplusplus.com/

Hello World in C
#include <stdio.h>

/**
 * Compile this file with:
 * gcc -o hello hello.c
 */
int main(int argc, char **argv)
{
 printf("Hello, World!\n");
 return 0;
}

➔ Compile: gcc hello.c
◆ creates executable a.out

➔ Or: gcc -Wall -std=c11 -o
hello hello.c
◆ Wall - turns all warnings on
◆ C11 - specifies using C11 standard

libraries
◆ Creates executable hello

➔ Run: ./a.out or ./hello
◆ Exits with ʻ0ʼ (return 0;)

Source File
Structures

// includes for functions & types
defined elsewhere
#include <stdio.h>
#include “localstuff.h“
// symbolic constants
#define MAGIC 42
// global variables (if any)
static int days_per_month[] = { 31,
28, 31, 30, …};
// function prototypes
// (to handle “declare before use”)
 void some_later_function(char, int);
// function definitions
void do_this() { … }
char *return_that(char s[], int n)
{ … }
int main(int argc, char ** argv) { … }

Hello World in C
#include <stdio.h>
#define REPS 5
/**
 * Compile this file with:
 * gcc -o hello hello.c
 */
int main(int argc, char **argv)
{
 printf("Hello, World!\n");
 return 0;
}

➔ Include the stdio library (printf,
stdout, etc)

➔ Other standard libraries
◆ Stdlib, math, assert, etc

➔ Also include developer files
◆ #include “myFile.h”

Hello World in C
#include <stdio.h>
#define REPS 5
/**
 * Compile this file with:
 * gcc -o hello hello.c
 */
int main(int argc, char **argv)
{
 printf("Hello, World!\n");
 return 0;
}

➔ Include the stdio library (printf,
stdout, etc)

➔ Other standard libraries
◆ Stdlib, math, assert, etc

➔ Also include developer files
◆ #include “myFile.h”

➔ Preprocessor also defines macros

Hello World in C
#include <stdio.h>

/**
 * Compile this file with:
 * gcc -o hello hello.c
 */
int main(int argc, char **argv)
{
 printf("Hello, World!\n");
 return 0;
}

➔ Comment block
◆ /* long form comments */
◆ // shorter comments

Hello World in C
#include <stdio.h>

/**
 * Compile this file with:
 * gcc -o hello hello.c
 */
int main(int argc, char **argv)
{
 printf("Hello, World!\n");
 return 0;
}

➔ C functions look a lot like Java
methods.
◆ Have return type, arguments
◆ Code block set off with ʻ{ʻ and

ʻ}ʼ
➔ Program runs through ʻmainʼ

◆ But not part of class!!
➔ Return value - program exit

◆ >> echo “$?”

“Hello, World!\n”
Is a string of length 15 (\n is one character, but contains \0)

In this case, is a ʻstring literalʼ - evaluates to a global, immutable
array.

“printf”

Prints to stdout, which is defined in stdio.h

I/O : Printf, scanf

➔ Printf (print-format)
➔ int printf(const char *format, ...)
➔ ʻFormatʼ is a string that can contain format tags
➔ + additional arguments to match tags
➔ Number of arguments better match number of %
➔ Corresponding arguments better have the right

types (%d, int; %f, float; %e, float (prints
scientific); %s, \0- terminated char*; … Compiler
might check, but not guaranteed

◆ best case scenario: you crash
➔ printf("%s: %d %g\n", p, y+9,

3.0)

➔ scanf (gets input, formatted)
➔ int scanf(const char *format, ...)
➔ ʻFormatʼ is a string that can contain format

tags
➔ + additional arguments to match tags -

should be pointers to the right data type so
input can be stored in them

➔ scanf(“%d %s”, &n, str);
➔ scanf("%*s %d", &a);

◆ %*s ignores string until space, then reads in
an integer

Printf and scanf are two I/O functions, prototyped in stdio.h

Hello World in C
#include <stdio.h>
#define REPS 5
/**
 * Compile this file with:
 * gcc -o hello hello.c
 */
int main(int argc, char **argv)
{
 for (int i=0;i<REPS;i++) {
 printf("Hello, World!\n");
 }
 return 0;
}

➔ C functions look a lot like Java
methods.
◆ Have return type, arguments
◆ Code block set off with ʻ{ʻ and

ʻ}ʼ
➔ Program runs through ʻmainʼ

◆ But not part of class!!
➔ Return value - program exit

◆ >> echo “$?”

Control constructs
Similar to Java: if, while, switch

Break, continue, etc.

https://www.gnu.org/software/gnu-c
-manual/gnu-c-manual.html#State
ments

No Boolean type!

Use integers, can declare
constants.

Generally, 0/NULL => False

Anything else => True

Or #include <stdbool.h>

https://www.gnu.org/software/gnu-c-manual/gnu-c-manual.html#Statements
https://www.gnu.org/software/gnu-c-manual/gnu-c-manual.html#Statements
https://www.gnu.org/software/gnu-c-manual/gnu-c-manual.html#Statements

Computers & Memory
CPU - the ʻcentral processing unitʼ:
computer circuitry that follows computer
instructions with simple logic, arithmetic,
and I/O

Hard disc storage (modernly often solid
state memory instead of traditional drive):
holds long-term memory which can
persist across re-starts

RAM (memory) : where data is stored
during operation - short term memory

Working memory.

 Address space: list of bytes addressed in orderAddress ʻ0ʼ
Address ʻ4ʼ

Address ʻ264-1ʼ or ʻ232-1ʼ

● Programs are said to have access to this 264 byte space
○ ʻ64 bitʼ system refers to needing 64 bits to index the space
○ But really donʼt - many other things are also using this space

● Location in array is the ʻaddressʼ of a byte
● Programs keep track of addresses of each of their pieces of memory
● Accessing unused address causes a ʻsegmentation faultʼ

Working memory, cont.

 Program address space

code
● Lowest memory stores program instructions, then global variables (static

constants, string literals)
● ʻHeapʼ holds dynamically allocated variables (ʻnewʼ or ʻmallocʼ variables)
● ʻStackʼ holds current instructions, each function in a frame

○ ʻStackʼ memory implies that a frame is added, and then the last frame added is removed first

● The heap and stack grow dynamically. Meet in the middle ?= ʻout of memoryʼ error

heap ->globals <- stack

Pointers
“Point to memory location” int x = 4;

int *xPtr = &x;

int xCopy = *xPtr;

int* noPtr = NULL;

Variable called ʻxʼ of type
ʻintʼ given value of ʻ4ʼ

Variable called ʻxPtrʼ of type
ʻpointer to an integer ,̓ given
value of the location of ʻxʼ

Variable called xCopy given
the value stored at the
location pointed to by xPtr

Variable ʻnoPtrʼ correctly set
when location is not yet
known

Arrays
Contiguous blocks in memory

Declare as

Datatype arr[len]

Has type

Datatype*

Stores the location in memory of the
first value; when arrays are passed
passes this memory location

 Danger, Will Robinson!!

arr

arr[3] arr[len-1]

arr[len+2]

Strings
No real strings - just arrays of characters.
["h", "e", "l", "l", "o", " ", "w", "o", "r", "l", "d", "!", \0]

Strings terminate with \0 so their length can be determined

char str[] = "hello"; // array syntax
char *str2 = "hello"; // pointer syntax
char *arrStr[] = {"ant", "bee"}; // array containing char*'s
char **arrStrPtr = arrStr; // pointer to an array containing char*'s
arrStr[0] = "cat";

