
What do you think? Work with a partner(s):

Write a command that finds the phrase
#!/bin/bash in all the files in your
directory tree.

Write a command that finds all the files
containing the phrase bash in your
home directory.

How are you using grep or globbing in
one or both of these commands?

CSE 374 Lecture 6
Regular expressions and grep

Globbing and
Regex

Globbing: the shell filename
expansion; matches some patterns

Regular expressions (regex): a set of
rules for matching patterns in text

(We see regular expressions in math,
as formal grammars in cs, and other
variations as well. Different
applications (egrep) my have slightly
different rules.)

Regex theory
1. A set of rules for matching a pattern (P) to a string (S)
2. All strings are made of a combination of the null (empty) set,

the empty string 𝜺, and a single character.
3. Regular expressions match a string if

3.1. P is a literal character (a, b, …) that matches the string S
3.2. P1P2 matches S if S = S1S2 such that P1 matches S1 and P2 matches S2
3.3. P1|P2 matches S if P1 matches S OR P2 matches S
3.4. P* matches S if there is an i such that P...P (i times) matches S.

Includes i=0 which matches 𝜺.

Regex rules
Regular expressions have

Characters: the literal characters [a b 9] (S is an exact duplicate of P)

Anchors: sets the position in the line where P may be found (^ or $)

Modifiers: modify the range of text P may match (* or [set_of_chars])

Note: Regex details & implementation may vary between application, but general rules
apply.

Regex special characters (some are \escaped)
\ : escape following character

.̒̓ : matches any single character at least once

p1|p2 : matches p1 OR p2

ʻ*ʼ : matches zero or more of the previous p

ʻ?ʼ : matches zero or one of the previous p (𝜺|p)

ʻ+ʼ : matches one or more of previous p (pp*)

() : group patterns for order of operations

{} : repeat n times

[] : contain literals to be matched (single or
range)

^ : Anchors to beginning of line

$: anchors to end of line

<> : word boundaries

Classes of characters

. == any character

[a-z] == a, b, c, d … z

[A-Z] == A, B, C, D … Z

[0-9] == 0,1,2,3,4,5,6,7,8,9

abc == literally abc

c.t → cat, cut, cot

[Hh]ello! → Hello!, hello!

[BLERG] -> B, L, E, R or G

[0-5][5-9] → 15,16,17,18,19
 25,26,27,28,29
 35,36,37,38,39
 45,46,47,48,49
 55,56,57,58,59

Repipipititition

* == zero or more, a* → {, a, aa, aaa, aaaa, …}

+ == one or more, a+ → {a, aa, aaa, …}

? == zero or one of the preceding, a? → {, a}

{n} == exactly n repetitions of the preceding, a{3} → aaa

a|b == a or b, this|that|when|how → this, that, when, how

All but | are POSTFIX OPERATORS (they come after the pattern)

Invisible characters

^ == the start of a line

$ == the end of a line

\t == a tab

? == zero or one of the preceding

Extras

[^abc] : matches everything NOT abc

ʻ*ʼ : is greedy; matches as much as possible

Grep Regex

By default, grep matches each line against .*p.*

You can anchor the pattern with ^ (beginning)
and/or $ (end) or both (match whole line
exactly)

These are still “real” regular expressions

Backreference & repeated matches
Up to 9 times in a pattern, you can group with (p) and refer to the matched text later!

You can refer to the text (most recently) matched by the nth group with \n.

Simple example: double-words ^\([a-zA-Z]*\)\1$

You cannot do this with actual regular expressions; the program must keep the previous
strings.

\(p\)\{n\} will match the p n times. \{n,m\} matches at least n, but not more than m
times.

Bash Regex Gotchya’s
● Modern (i.e., gnu) versions of grep and egrep use the same regular

expression engine for matching, but the input syntax is different for
historical reasons
○ For instance, \{ for grep vs { for egrep – See grep manual sec. 3.6

● Must quote patterns so the shell does not muck with them – and use single
quotes if they contain $ (why?)

● Must escape special characters with \ if you need them literally: \. and . are
very different
○ But inside [] many more characters are treated literally, needing less quoting (\

becomes a literal!)

Regular expressions and Grep
Can you write a regular expression to identify every
phone number?

\ : escape following character
.̒̓ : matches any single character at least once
p1|p2 : matches p1 OR p2
ʻ*ʼ : matches zero or more of the previous p
ʻ?ʼ : matches zero or one of the previous p (𝜺|p)
ʻ+ʼ : matches one or more of previous p (pp*)
() : group patterns for order of operations
{} : repeat n times
[] : contain literals to be matched (single or
range)
^ : Anchors to beginning of line
$: anchors to end of line
<> : word boundaries

D., Mark (206) 901-2345
E., Clarence +1-206-789-0123
E., Philip 1-206-890-1234
G., Timnit (206) 4569012
H., Grace +1 206.345.6789
H., Margaret (206)567-8901
J., Katherine 206 456 7890
L., Ada (206) 123-4567
L.,Jerry 2061235678
O., Ellen 206 2346789
T., Alan 206-234-5678
W., Jeannette 206 678.9012

What is ‘sed’?

Stream editor: makes basic text
transformations on an input stream

Use ʻsed command file[s]ʼ

Changes line by line, one pass through
Run ʻman sedʼ now!

Basic usage: sed
$ sed [OPTIONS] [COMMAND] [FILE]

$ input_stream | sed [COMMAND]

$ sed -i 's/original/replacement/g' test.txt

Useful options:

-i : replace input file with edited version

-e : allows for multiple commands -
applies each left to right (sed -e
's/a/A/' -e 's/b/B/' <old >new)

-f : reads command from a file

-n : suppresses output except when told
otherwise

Omitting file applies [COMMAND] to
stdin

ʻIʼ - Replaces input
file with updated
version

COMMAND

ʻsʼ - substitute

Input file

ʻGʼ - global

Sed cycle
1. Read one line from input stream
2. Put in pattern space without trailing /n
3. Execute command

a. commands with address are only executed if address is verified
4. Pattern space is printed to the output stream

Addresses
Addresses apply sed only to specific lines. Address comes before command.

Number : only that line number

$: last line of input

First~step : every ʻstepʼ lines starting with ʻfirstʼ

/regexp/ : only lines matching the regular expression

l1,l2: range - between line that matches l1, and line that matches l2 (l1&l2 can be numbers or
regex)

Other types of commands
ʻPʼ : print this line (often used with ʻ-nʼ to
suppress printing of non-marked lines)

ʻdʼ : delete this pattern space and continue

ʻyʼ : transliterate characters

ʻaʼ: append text

ʻiʼ : insert text

ʻcʼ : replace text

sed -n 's/pattern/&/p' <file

$ echo hello world | sed
'y/abcdefghij/0123456789/'
74llo worl3$

$ seq 3 | sed '2i hello'
1
hello
2
3

$ seq 10 | sed '2,9c hello'
1
hello
10

sed - more ideas
➢ Sed encounters one line at a time, and does one pass of the input.
➢ Delimiter ʻ/ʼ can be changed to anything, like ʻ_ʼ or ʻ:ʼ - may help if COMMAND contains

many ʻ/ʼ
➢ Multi-line editing is possible, but painful, with sed (with ʻhold bufferʼ). Use another

scripting program (like ʻawkʼ).
➢ Branches are also possibly (ʻbʼ and ʻtʼ commands)
➢ Use backreferences (\1, \2 etc) to refer back to regex gathered with \(to \)

What about
‘awk’

Or perl? Or ed? Or ruby?

Special purpose language for text
editing on an input stream. More
programming concepts, used for
bigger commands.

Many scripting choices, often with
more functionality. Sed stands as the
quickest, easiest, and standard on *nix
systems for simple commands.

