What do you think?

Can you make an alias called ‘bestclass’
that automatically changes into you
cse374 director whenever you call it?

Can you make it so that this alias is
called every time you log into Cancun?

Go ahead - see if you and your neighbor
solve this problem the same way.

CSE 374 Lecture 4

Shell Variables and Scripting

Feel free to ask questions until lecture starts...

Alias

Defines a shortcut or ‘alias’ to (Essentially a really easy script)
a command.
¢ M)
AISO’ alias .bash_profile .bashrc
‘bashrc e Executed for login shells e Executed for non-login shells
e Use for commands run once e Use for commands that are re-run
o Changing SPATH o Aliases & functions

echo ‘alias greet="echo hello SUSER"’ >> ~/.bashrc
greet

source ~/.bashrc

greet

Today

Scripting -Source / executable, exit codes, math

09:30-10:20 Lecture 30 || 12:00-13:00 OH (Bagaria) 01 || 09:30-10:20 Lecture 02 | 14:30-16:00 OH (Chu) 03 | 09:30-10:20 Lecture 04
CSE2G10 CSE2274 CSE2G10 TBA CSE2G10
1/0 Redirection and alias introduction to scripting Scripting Continued
S 13:00-15:00 OH (Luo) g2 o
Sliges Slides Slides
Shell history, Alias demo CSEL403 shiftdemo script, dedls script, lectfour fibo script, sdel script
History shortcuts demonstration script Review before class:
Emacs motivation, Emacs demo Redirection Demo Exercises for this class session
Extras: Emacs motivation, Emacs demo
11:00-12:30 OH (Hazen) 16:00-17:30 OH (Zhao)
CSE1212 CSE1220 :
23:59 PRACTICE HWO due; Shell Access Spec
October
Monday Tuesday Wednesday Thursday Friday
09:30-10:20 Lecture 07 | 12:00-13:00 OH (Bagaria) 08 | 09:30-10:20 Lecture 09 | 14:30-16:00 OH (Chu) 10 | 09:30-10:20 Lecture 11
CSE2G10 CSE2274 CSE2G10 TBA CSE2G10
RegEx, Grep Regexand sed Version Control

11:00-12:30 OH (Hazen)
CSE1212

23:59 HW1 due; Bash Spec

13:00-15:00 OH (Luo)
CSE1403

16:00-17:30 OH (Zhao)
CSE1220

23:59 HW2 due; Shell Script Spec

HWo & HW1

Please remember that these two assignments should be
done using Cancun.

If your homework passes the autograder this is sufficient....

To move files from seaside, the ‘scp’ command works well. Remember the
command is scp <copyfrom> <copyto>,and pay attention to which
computer you are executing it on.

Passwords, and managing Passwords

Linux systems have consistent password Change your password on Linux:

> d
management. passw

Prompts for previous password, then new

e /etc/passwd file contains userinfo password

o Username

o Password

o Userid, groupid
o Shell

Passwd also has facilities for those with sudo
access to update other user accounts and password
management

Cancun is a little different - passwords are obtained

o Home directory :
from the UWNetID servers (no /etc/passwd entries).
® /etc/shadow stores encrypted Passwd will work, and propagate changes through

paSSWOI’dS UWNetlID servers.

Computer Model

OS: Linux

Interface: shell (bash)

Users (many)

7/
%

Computers do two

things

> Storedata
(filesystem)

> Manipulate data
(processes)

Shell is a process that

allows the user to

interact with the

above.

But, the shell also

allows programmingin

its special language.

Aside

ils What Operating System(s) (OS) do you use? “*

[Android] 30
iOS 8%
(Windows] o
MacOS 30%

[Linux (Ubuntu, Mint, Fedora)

]10%

Other

2%

Bash (shell) Language

e Bash acts as a language interpreter
o Commands are subroutines with arguments

o Bash interprets the arguments & calls
subroutine
o Bash also has its own variables and logic

State (Environment variables, etc.)

Process Output>

BASH applies its own processing
to the I/0 text - ‘globbing’

Special Characters

1><&| *~[]“¢" §]

\ Is escape
character

“string”

‘string’

e
—>

What do they all
mean?

Would substitute
things like SVAR

Suppresses
substitutions

Shell Behavior

All redirection & string expansion or substitutions
are done by the shell, before the command.

Command only sees resulting 1/O streams.

|/0 Streams

e All bash commands have three

streams

o 0-stdin [keyboard]

o 1-stdOut [screen]

o 2-stdErr [screen]
e Canredirect streams

o <yourlnput
>yourOutput
>> appendYourOutput
2>yourError
&> yourOQutput&Error
And more...

o O O O O

Special File /dev/null

o IsEoFifinput
o Dataisdiscarded if output

Can combine one cmd to the next

o Cmdl|cmd2 - pipe output of cmd1
into input of cmd2

o Cmdl; cmd2 - do one after another

o Cmdl cmd2’ - use output of cmd2
as argument to cmdl

Can use cmd logic

o Cmd1||cmd2-do cmd2 if cmdl fails
o Cmdl&&cmd2-docmd?2ifcmdl
succeeds

Some Bash redirection syntax

redirect stdout to a file - command > output
redirect stderr to a file command 2> output
redirect stdout to stderr command 1>&2 output
redirect stderr to stdout command 2>&1 output
redirect stderr and stdout to a file command &> output

Reading:Bash Redirections (spec), bash hackers redirections (examples)

https://www.gnu.org/software/bash/manual/html_node/Redirections.html
http://wiki-dev.bash-hackers.org/syntax/redirection

Bash (shell) Language

e Bash acts as a language interpreter
o Commands are subroutines with arguments

o Bash interprets the arguments & calls
subroutine
o Bash also has its own variables and logic

Towards Scripts

Shell has a state (working directory, user,
aliases, history, streams)

Can expand state with variables
‘Source’ runs a file and changes state

Printenv
echo SPS1
echo SPWD
echo SPATH

Special Variables

Common variables which set shell state:

SHOME - sets home directory. SHOME=~/CSE374 would reset your home directory
to always be CSE374

SPS1 - sets prompt

SPATH - tells shell where to look for things. Often extended:
SPATH=SPATH:~/CSE374

Show current state: printenv

Towards Scripts

Shell has a state (working directory, user, aliases,
history, streams)
Can expand state with variables

e ‘Source’ runs afile and changes state

Can run a file without changing state by
running script in new shell.
Allows for repeatable processes and actions

Variables useful in a script

S# stores number of parameters (strings) entered

S0 first string entered - the command name

SN returns the Nth argument

$? Returns state of last exit

$* returns all the arguments

S@ returns a space separated string with each argument

(* returns one word with spaces, @ returns a list of words)

Variables

Shell has a state, which
includes shell variables

All variables are strings
(but can do math, later)

White space matters - not
spaces around the ‘=’

Create: myVar= or myVar=value
Set: myVar=value

Use: SmyVar

Remove: unset SmyVar

List variables (use ‘set)

Export Variables

Use: export myVar

To make variable available in the
initial shell environment.

If a program changes the value of an
exported variable it does not
change the value outside of the
program

: export -n remove export property

Variables act as though passed by
value

Okay, lets make a script!

First line of file is #!/bin/bash (specifies which interpreter to execute)
Make file executable (chmod u+x)

Run a file ./myNewScript

Shell sees the shell program (/bin/bash) and launches it to run the
script

5. Caninclude

a. String tests (string returns true if non-zero length, string < string, etc.)
b. Logic (&&]],!) - use double brackets

c. Filetests (-d:isdirectory, -f: is file, -w: file has write permission etc.)
d. Math - use double parens

> w b=

Exit with no error:

EXIt COdes Use exit orexit O

Exit with error:

Command ‘exit’ exits a shell, and
ends a shell-script program. Userexit 1 or..{1-255}

shiftdemo

Script Arguments & Errors

Script refers to it" argument at
Si; SO0 is the program

Use ‘shift’ to move arguments
towards left (Si become Si-n)

Quoting Variables
In order to retain the literal value of something use ‘single quotes’
In order to retain all but $, *, \ use “double quotes”

Put $* and $@ in quotes to correctly interpret strings with spaces in them.

Arithmetic

Variables hold strings, so we need a way to tell the shell to evaluate them
numerically:

K=$i+$j does not add the numbers
Use the shell function ((

k=S (($i+383))

Orlet k="$i+$3”

The shell will automatically convert the strings to the numbers

What do you think?

Try it:

Download the lectfour demonstration
script. Can you modify it so that it
prints out the sum of two arguments?

Functions and local variables

name () compound-command [redirections]
or

function name [()] compound-command [
redirections]

Ex:

func1()
{

local var="func1 local'
func2

Stuff to watch out for

White space: spacing of words and symbols matters

Assign WITHOUT spaces around the equal, brackets are WITH SPACES
Typo on left creates new variable, typo on right returns empty string.
Reusing variable name replaces the old value

Must put quotes around values with spaces in them

Non number converted to number produces ‘0’

Conditionals
Binary operators: -eq -ne -It -le -gt -ge
Can use the [[shell command touse<,>,==

Syntax is a little different, but commands works as expected

if test; then
commands

fi

while test; do

commands
done

for variable in words; do
commands
done

Flow control

test expression or [expression]

if [-f .bash profile]; then
echo "You have a .bash profile.
Things are fine."
else
echo "Yikes! You have no
.bash profile!™
fi

http://linuxcommand.org/lc3_man_pages/testh.html

http://linuxcommand.org/lc3_man_pages/testh.html

Shell-scripting Notes

Bash Scripting

Interpreted

Esoteric variable access
Everything is a string

Easy access to files and program

Good for quick & interactive programs

Java Programming

Compiled

Highly structured, Strongly typed
Strings have library processing
Data structures and libraries

Good for large complex programs

Scripting Style Guide

Scripts should generally be <200 lines "¢ g and doitwelt
Always use spaces, not tabs (indent line with two spaces)
Comment code with ‘#’

https://google.github.io/styleguide/shell.xml

Emacs (text editor)

C-x C-s #save

C-x C-c # quit

C-e # go to end of line

C-a # go to beginning of line
C-x C-f # find a file

C-g #exit menu

C-x C-k # kill a buffer

You can use any text editor
you like. Emacsis amazingly
powerful, and highly
customizable with lisp scripts.
It is probably worth learning.

