
What do you think?

You want to find a linux command that
will reverse the letter of an input line.

What are some ways you can do this?

CSE 374 Lecture 3
More Linux and I/O Redirection

Linux Model Linux -
Portable; multi-user

Includes

● Hardware layer (drivers, etc.)
● Kernel (does all the hardware

interaction)
● Shell (provides user friendly

interface to kernel)
● Processers (various programs)
● Users - multiple users run

processes

http://www.tldp.org/LDP/intro-linux/html/chap_01.html

http://www.tldp.org/LDP/intro-linux/html/chap_01.html

File Systems
(Processes interact with data, stored in a file system)

❏ File systems are trees
❏ (or directed acyclic graphs)
❏ A file (or directory) is specified by

its path from the top (ʻ/ʼ)
❏ Can be specified absolutely or
❏ Relatively (from current location)

❏ This directory .̒/ʼ
❏ One directory up .̒./ʼ

❏ You have access to your ʻhomeʼ
directory (ʻ~ʼ)

More: https://refspecs.linuxfoundation.org/FHS_3.0/fhs/index.html
Also true on Windows, btw, although the structure and some notation
is different.
Demo - whoami, pwd, ls, mkdir, cd, cp, mv, rm, echo, touch, cat less,
more
http://www.tldp.org/LDP/intro-linux/html/sect_03_01.html

https://refspecs.linuxfoundation.org/FHS_3.0/fhs/index.html
http://www.tldp.org/LDP/intro-linux/html/sect_03_01.html

Getting Help
Most commands: ʻman lsʼ
Also “--help”

Look for keyword: ʻman -kʼ

http://www.tldp.org/LDP/intro-linux/html/sect_02_03.html

http://www.tldp.org/LDP/intro-linux/html/sect_02_03.html

Try this:

What information do the following
commands give you?

> man cat
> cat –-help
> mak -k concatenate

Bash (shell) Language

● Bash acts as a language interpreter
○ Commands are subroutines with arguments
○ Bash interprets the arguments & calls

subroutine
○ Bash also has its own variables and logic

ProcessInput Output

BASH applies its own processing
to the I/O text - ʻglobbingʼ

Special Characters
● Directory Shortcuts

○ ~uname or ~
○ ./ or ../

● Wildcards - Globbing
○ 0 or more chars: *
○ Exactly 1 char: ?
○ Specified chars: [a-f]

History, or ʻ!ʼ

Variables
Define variable

i=15

Access variable

$i

Undefined variable is empty string

> echo $SHELL

Special Characters

! > < & | * ~ [] “ ʻ ` $ /

 \ is escape
character

“string”

ʻstringʼ

What do they all
mean?

Would substitute
things like $VAR

Suppresses
substitutions

Shell Behavior

All redirection & string expansion or substitutions
are done by the shell, before the command.

Command only sees resulting I/O streams.

ProcessStdIn

StdErr

StdOut

Processes have two
OUTPUT
destinations, the
default being StdOut
and StdErr. You can
think of these as two
potential files to
which a processes
can write.

Processes all
can take INPUT
from one
source, the
default being
StdIn.

Process
Userʼs
file

Error
file

Output
file

You can also write to
different files instead of
StdErr or StdOut. The ʻ>ʼ
symbol means to put in an
new file, while ʻ>>ʼ means
to append to the end of a
file. The ʻ2ʼ specifies that
you want iostream ʻ2 ,̓ or
the error stream.

But, instead of
using StdIn you
can use any file,
and ʻredirectʼ it in
by using the ʻ<ʼ
symbol (pointing
towards process).

<

>>

2>

I/O Streams
● All bash commands have three

streams
○ 0- stdIn [keyboard]
○ 1- stdOut [screen]
○ 2-stdErr [screen]

● Can redirect streams
○ < yourInput
○ > yourOutput
○ >> appendYourOutput
○ 2> yourError
○ &> yourOutput&Error
○ And more…

● Special File /dev/null
○ Is EoF if input
○ Data is discarded if output

● Can combine one cmd to the next
○ Cmd1 | cmd2 - pipe output of cmd1

into input of cmd2
○ Cmd1; cmd2 - do one after another
○ Cmd1 `cmd2` - use output of cmd2

as argument to cmd1
● Can use cmd logic

○ Cmd1 || cmd2 - do cmd2 if cmd1 fails
○ Cmd1 && cmd2 - do cmd 2 if cmd1

succeeds

redirect stdout to a file → command > output

redirect stderr to a file command 2> output

redirect stdout to stderr command 1>&2 output

redirect stderr to stdout command 2>&1 output

redirect stderr and stdout to a file command &> output

Reading:Bash Redirections (spec), bash hackers redirections (examples)

Some Bash redirection syntax

https://www.gnu.org/software/bash/manual/html_node/Redirections.html
http://wiki-dev.bash-hackers.org/syntax/redirection

Alias

Defines a shortcut or ʻaliasʼ to
a command.

Also, ʻaliasʼ - to list aliases

.bashrc

(Essentially a really easy script)

Variables & Alias
Define variable

i=15

Access variable

$i

Undefined variable is empty string

Alias cheer=”echo yahoo\!”

Towards Scripts

● Shell has a state (working directory, user,
aliases, history, streams)

● Can expand state with variables
● ʻSourceʼ runs a file and changes state
● Can run a file without changing state by

running script in new shell.

Emacs (text editor)
C-x C-s #save

C-x C-c # quit

C-e # go to end of line

C-a # go to beginning of line

C-x C-f # find a file

C-g #exit menu

C-x C-k # kill a buffer

You can use any text editor
you like. Emacs is amazingly
powerful, and highly
customizable with lisp scripts.
It is probably worth learning.

Okay, lets make a script!
1. First line of file is #!/bin/bash (specifies which interpreter to execute)
2. Make file executable (chmod u+x)
3. Run a file ./myNewScript
4. Shell sees the shell program (/bin/bash) and launches it to run the

script
5. Can include

a. String tests (string returns true if non-zero length, string < string, etc.)
b. Logic (&&,||,!) - use double brackets
c. File tests (-d : is directory, -f: is file, -w: file has write permission etc.)
d. Math - use double parens

Script Arguments & Errors
Script refers to ith argument at
$i ; $0 is the program

Use ʻshiftʼ to move arguments
towards left ($i become $i-n)

Exit your shell with 0
(normal) or 1 (error)

Exit Codes

Exit with no error:

Use exit or exit 0

Exit with error:

User exit 1 or.. {1-255}
Command ʻexitʼ exits a shell, and

ends a shell-script program.

Variables useful in a script
$# stores number of parameters (strings) entered

$0 first string entered - the command name

$N returns the Nth argument

$? Returns state of last exit

$* returns all the arguments

$@ returns a space separated string with each argument

(* returns one word with spaces, @ returns a list of words)

