
What do you think? Name that Constructor!

What type of constructors do you
see below? How do you know?

CSE 374: Lecture 27
Concurrency

Function Pointers

vptr and vtable Visualization

4

Stock::GetMarketValue()

Stock::GetCost()

Stock::GetProfit()

Cash::GetMarketValue()

Cash::GetCost()

Cash::GetProfit()

DividendStock::GetMarketValue()

vptr vtable

Function Pointers
Can point to code the way we point to data. In C, the syntax is:
<return_type> (*<pointer_name>) (function_arguments);
Set equal to ‘address of function’ (&f)

Address ʻ0ʼ
Address ʻ4ʼ

Address ʻ264-1ʼ or ʻ232-1ʼ

code heap ->globals <- stack

Function Pointers
Can point to code the way we point to data. In C, the syntax is:
<return_type> (*<pointer_name>) (function_arguments);
Set equal to ‘address of function’ (&f)

double two(double x) {
 return 2.0;
}

printf("int two(x) = %e\n",
 integrate(&two, 0.0,

2.0, 1.0));

double integrate(
double (*f)(double),
double lo, double hi,
double delta) {

 ...
 ans += (*f)(x) *

((hi-lo) / ((n+1));
 ...

Function Pointers: nicer syntax
Typedef can be used to shorten datatype:

typedef double (*fdd)(double); //fdd is function double-double

The C compiler is smart enough to know what is a function and what is a variable:

ans += (*f)(x) * ((hi-lo) / (n+1)); // eval. @location of f
ans += f(x) * ((hi-lo) / (n+1));

Also interprets function name as a pointer to the code:

integrate(&sin, 0.0, PI/2.0, 0.01));
integrate(sin, 0.0, PI/2.0, 0.000001));

Code

int main() {

 float* opt;
 …
 printf("Starting PSO on Sphere\n");
 opt = optimize(spherefunc, mins, maxs);
 …
 return 0;
}

// spherefunc min at 0,0
float spherefunc(float* pos) {
 return pos[0]*pos[0] + pos[1]*pos[1];
}

float* optimize (float(*obj)(float*), float* mins, float* maxs);

Review Opportunity:

float(*obj)(float*)

 -- function pointer from
float* to float

Concurrency

Sequential Programming
Sequential programming demands finishing sequence before starting the next one

Previously, performance improvements could be made by improving hardware
- no longer (Goodbye Mooreʼs Law)

What is Concurrency?

● Running multiple processes
simultaneously

○ Running separate programs
simultaneously

○ Running two different ʻthreadsʼ in one
program

● Each ʻprocessʼ is one ʻthreadʼ
● Parallelism refers to running things

simultaneously on separate resources
(ex. Separate CPUS)

● Concurrency refers to running multiple
processes on SHARED resources

Allows processes to run ʻin the backgroundʼ

★ Responsiveness - allow GUI to respond
while computation happens

★ CPU utilization - allow CPU to compute
while waiting (for data, input, etc)

★ Isolation - keep threads separate so
errors in one donʼt affect the others

We already do this!
‘Nice’ linux parallel processes
NAME
 nice - run a program with modified scheduling priority

SYNOPSIS
 nice [OPTION] [COMMAND [ARG]...]

DESCRIPTION
 Run COMMAND with an adjusted niceness, which affects process schedul-
 ing. With no COMMAND, print the current niceness. Niceness values
 range from -20 (most favorable to the process) to 19 (least favorable
 to the process).

Other Linux tools
Top - shows all processes
with ʻnicenessʼ (NI)

[mh75@klaatu ~]$ ps -o
pid,comm,nice

PID COMMAND NI
11483 bash 0
13034 ps 0

Web Search Architecture

14

query
processor

client

client

client

client

client

index
file

index
file

index
file

Execution Timeline: a Multi-Word Query

15

n
e
t
w
o
r
k

I
/
O

m
a
i
n
(
)

G
e
t
N
e
x
t
Q
u
e
r
y
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

n
e
t
w
o
r
k

I
/
O

D
i
s
p
l
a
y
(
)

G
e
t
N
e
x
t
Q
u
e
r
y
(
)

• • •

time

query
C
P
U

C
P
U

r
e
s
u
l
t
s
.
i
n
t
e
r
s
e
c

t
(
)

r
e
s
u
l
t
s
.
i
n
t
e
r
s
e
c
t
(
)

What About I/O-caused Latency?
● Jeff Deanʼs “Numbers Everyone Should Know” (LADIS

ʻ09)

16

Execution Timeline: To Scale

17

n
e
t
w
o
r
k

I
/
O

m
a
i
n
(
)

d
i
s
k

I
/
O

d
i
s
k

I
/
O

d
i
s
k

I
/
O

• • •

time

query

n
e
t
w
o
r
k

I
/
O

C
P
U

C
P
U

Sequential Queries – Simplified

18

C
P
U
1
.
a

I/O
1.b

C
P
U
1
.
c

I/O
1.d

C
P
U
1
.
e

C
P
U
2
.
a

I/O
2.b

C
P
U
2
.
c

I/O
2.d

C
P
U
2
.
e

C
P
U
3
.
a

I/O
3.b

C
P
U
3
.
c

I/O
3.d

C
P
U
3
.
e

time

query 2

query 3

query 1

The CPU is idle most
of the time!

(picture not to scale)

Only one I/O request at
a time is “in flight”

Queries don’t run until
earlier queries finish

Sequential Queries: To Scale

19

I/O 1.b I/O 1.d

time

query 2

query 1

I/O 1.b I/O 1.d

I/O 1.b I/O 1.d

query 3

Sequential Can Be Inefficient
● Only one query is being processed at a time

○ All other queries queue up behind the first one

● The CPU is idle most of the time
○ It is blocked waiting for I/O to complete

■ Disk I/O can be very, very slow

● At most one I/O operation is in flight at a time
○ Missed opportunities to speed I/O up

■ Separate devices in parallel, better scheduling of a single device, etc.

20

Concurrency
● A version of the program that executes multiple tasks

simultaneously
○ Example: Our web server could execute multiple queries at the same time

■ While one is waiting for I/O, another can be executing on the CPU

○ Example: Execute queries one at a time, but issue I/O requests against
different files/disks simultaneously
■ Could read from several index files at once, processing the I/O results as they arrive

● Concurrency != parallelism
○ Parallelism is when multiple CPUs work simultaneously on 1 job

21

A Concurrent Implementation
● Use multiple threads or processes

○ As a query arrives, fork a new thread (or process) to handle it
■ The thread reads the query from the console, issues read requests against files, assembles results

and writes to the console

■ The thread uses blocking I/O; the thread alternates between consuming CPU cycles and blocking
on I/O

● The OS context switches between threads/processes
○ While one is blocked on I/O, another can use the CPU

○ Multiple threadsʼ I/O requests can be issued at once

22

Review: Processes
● To implement a “process”, the operating system gives us:

○ Resources such as file handles and sockets

○ Call stack + registers to support (eg, PC, SP)

○ Virtual memory (page tables, TLBs, etc …)

● If we want concurrency, what is the “minimal set” we need to
execute a single line of code?

23

bucket = hash(word);
hitlist = file.read(bucket);

foreach hit in hitlist {
 doclist.append(file.read(hit));
}

“Worker” 2“Worker” 1

Introducing Threads
● Separate the concept of a process from an individual “thread of control”

○ Usually called a thread (or a lightweight process), this is a sequential execution stream within a
process

● In most modern OSʼs:
○ Process: address space, OS resources/process attributes

○ Thread: stack, stack pointer, program counter, registers

○ Threads are the unit of scheduling and processes are their containers; every process has at least
one thread running in it

24

thread

Threads
● Threads were formerly called “lightweight processes”

○ They execute concurrently like processes
■ OSʼs often treat them, not processes, as the unit of scheduling

■ Parallelism for free! If you have multiple CPUs/cores, can run them simultaneously

○ Unlike processes, threads cohabitate the same address space
■ Threads within a process see the same heap and globals and can communicate with each other through variables

and memory

● But can interfere with each other – need synchronization for shared resources
■ Each thread has its own stack

● What does the OS do when you switch processes?
○ How does that differ from switching threads?

25

Multithreaded Pseudocode

26

doclist Lookup(string word) {
 bucket = hash(word);
 hitlist = file.read(bucket);
 foreach hit in hitlist
 doclist.append(file.read(hit));
 return doclist;
}

ProcessQuery() {
 results = Lookup(query_words[0]);
 foreach word in query[1..n]
 results = results.intersect(Lookup(word));
 Display(results);
}

main() {
 while (1) {
 string query_words[] = GetNextQuery();
 ForkThread(ProcessQuery());
 }
}

Multithreaded Queries – Simplified

27

C
P
U
1
.
a

I/O
1.b

C
P
U
1
.
c

I/O 1.d

C
P
U
1
.
e

C
P
U
2
.
a

I/O
2.b

C
P
U
3
.
a

I/O 3.b

C
P
U
3
.
c

I/O
3.d

C
P
U
3
.
e

time

query 2

query 3

query 1

C
P
U
2
.
c

I/O 2.d

C
P
U
2
.
e

Why Threads?
● Advantages:

○ You (mostly) write sequential-looking code

○ Threads can run in parallel if you have multiple CPUs/cores

● Disadvantages:
○ If threads share data, you need locks or other synchronization

■ Very bug-prone and difficult to debug

○ Threads can introduce overhead
■ Lock contention, context switch overhead, and other issues

○ Need language support for threads
28

Alternative: Processes
● What if we forked processes instead of threads?

● Advantages:
○ No shared memory between processes

○ No need for language support; OS provides “fork”

● Disadvantages:
○ More overhead than threads during creation and context switching

○ Cannot easily share memory between processes – typically communicate
through the file system

29

Threads vs. Processes

30

OS kernel [protected]

Stack
parent

Heap (malloc/free)
Read/Write Segments

.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

● Before creating a thread
○ One thread of execution running

in the address space
■ One PC, stack, SP

○ That main thread invokes a
function to create a new thread
■ Typically pthread_create()

SP
parent

PC
parent

Threads vs. Processes

31

OS kernel [protected]

Stack
parent

Heap (malloc/free)
Read/Write Segments

.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stack
parent

Heap (malloc/free)
Read/Write Segments

.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

Stack
child

SP
parent

PC
parent

SP
child

PC
child

Threads vs. Processes

32

OS kernel [protected]

Stack
parent

Heap (malloc/free)
Read/Write Segments

.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]
Stack

parent

Heap (malloc/free)
Read/Write Segments

.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()

SP
child

PC
child

OS kernel [protected]
Stack

parent

Heap (malloc/free)
Read/Write Segments

.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SP
parent

PC
parent

Alternate: Asynchronous I/O
● Use asynchronous or non-blocking I/O

● Your program begins processing a query
○ When your program needs to read data to make further progress, it registers

interest in the data with the OS and then switches to a different query

○ The OS handles the details of issuing the read on the disk, or waiting for data
from the console (or other devices, like the network)

○ When data becomes available, the OS lets your program know

● Your program (almost never) blocks on I/O

33

Event-Driven Programming
● Your program is structured as an event-loop

34

void dispatch(task, event) {
 switch (task.state) {
 case READING_FROM_CONSOLE:
 query_words = event.data;
 async_read(index, query_words[0]);
 task.state = READING_FROM_INDEX;
 return;
 case READING_FROM_INDEX:
 ...
 }
}

while (1) {
 event = OS.GetNextEvent();
 task = lookup(event);
 dispatch(task, event);
}

Asynchronous, Event-Driven

35

I/O
1.b

I/O 2.b

I/O 3.b

time

I/O 2.d

C
P
U
3
.
a

C
P
U
1
.
a

C
P
U
2
.
a

I/O 1.d

C
P
U
1
.
c

C
P
U
2
.
c

I/O
3.d

C
P
U
1
.
e

C
P
U
2
.
e

C
P
U
3
.
c

C
P
U
3
.
e

Why Events?
● Advantages:

○ Donʼt have to worry about locks and race conditions

○ For some kinds of programs, especially GUIs, leads to a very simple and
intuitive program structure
■ One event handler for each UI event

● Disadvantages:
○ Can lead to very complex structure for programs that do lots of disk and

network I/O
■ Sequential code gets broken up into a jumble of small event handlers

■ You have to package up all task state between handlers

36

One Way to Think About It
● Threaded code:

○ Each thread executes its task sequentially, and per-task state is
naturally stored in the threadʼs stack

○ OS and thread scheduler switch between threads for you

● Event-driven code:
○ *You* are the scheduler

○ You have to bundle up task state into continuations (data structures
describing what-to-do-next); tasks do not have their own stacks

37

So, how do we do this?
● C, Java support parallelism similarly (other languages can be different)

○ one pile of code, globals, heap
○ multiple “stack + program counter”s — called threads
○ threads are run or pre-empted by a scheduler
○ threads all share the same memory

● Various synchronization mechanisms control when threads run
○ “donʼt run until Iʼm done with this”

Address ʻ0ʼ
Address ʻ4ʼ

Address ʻ264-1ʼ or ʻ232-1ʼ

code heap ->globals <- stack

Concurrency in C & Java
C: the POSIX Threads (pthreads) library

● #include <pthread.h>
● pass -lpthread to gcc (when linking)
● pthread_create takes a function pointer and arguments, runs as a separate thread

Java: built into the language

● Subclass java.lang.Thread, and override the run method
● Create a Thread object and call its start method
● Any object can “be synchronized on” (later today)

(Aside: POSIX)
 “ The Portable Operating System Interface (POSIX)[1] is a family of
standards specified by the IEEE Computer Society for maintaining
compatibility between operating systems. POSIX defines the
application programming interface (API), along with command line
shells and utility interfaces, for software compatibility with variants of
Unix and other operating systems.[2][3]” - Wikipedia

The C ʻpthreadʼ conforms to the POSIX standard for threading.

Pthread functions
Pthread_t threadID;
The threadID keeps track of which thread we are referring.

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void*), void *arg);
https://man7.org/linux/man-pages/man3/pthread_create.3.html

Note - pthread_create takes two generic (untyped) pointers
interprets the first as a function pointer and the second as an argument pointer. This kicks off a
new thread.

int pthread_join(pthread_t thread, void **value_ptr);
Puts calling thread ʻon holdʼ until ʻthreadʼ completes - useful for waiting to thread to exit

https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html

https://man7.org/linux/man-pages/man3/pthread_create.3.html
https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html

Handling Memory

Threads
● Threads are like lightweight processes

○ They execute concurrently like processes
■ Multiple threads can run simultaneously on multiple CPUs/cores

○ Unlike processes, threads cohabitate the same address space
■ Threads within a process see the same heap and globals and can communicate with each other

through variables and memory

● But, they can interfere with each other – need synchronization for shared
resources

■ Each thread has its own stack 43

Memory Consideration
(ex. pthreadex.c)

● If one thread did nothing of interest to any other thread, why bother
running?

● Threads must communicate and coordinate
○ Use results from other threads, and coordinate access to shared resources

● Simplest ways to not mess each other up:
○ Donʼt access same memory (complete isolation)
○ Donʼt write to shared memory (write isolation)

● Next simplest:
○ One thread doesnʼt run until/unless another is done

Threads and Address Spaces

● Before creating a thread
○ One thread of execution running

in the address space
■ One PC, stack, SP

○ That main thread invokes a
function to create a new thread
■ Typically pthread_create()

45

OS kernel [protected]

Stack
parent

Heap (malloc/free)
Read/Write Segment

.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP
parent

PC
parent

Threads and Address Spaces

● After creating a thread
○ Two threads of execution running

in the address space
■ Original thread (parent) and new thread (child)

■ New stack created for child thread

■ Child thread has its own PC, SP

○ Both threads share the other
segments (code, heap, globals)
■ They can cooperatively modify shared data

46

OS kernel [protected]

Stack
parent

Heap (malloc/free)
Read/Write Segment

.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP
parent

PC
parent

Stack
childSP

child

PC
child

Multithreaded Server: Architecture
● A parent thread creates a new thread to handle each

incoming connection
○ The child thread handles the new connection and subsequent

I/O, then exits when the connection terminates

● See searchserver_threads/ for code if curious

47

Multithreaded Server

48

client

server

connect accept()

Multithreaded Server

49

client

server

pthread_create()

Multithreaded Server

50

client

server

accept()

Multithreaded Server

51

client

client

server

pthread_create()

Multithreaded Server

52client

client

client

client

client

client
server

shared
data

structures

POSIX Threads (pthreads)
● The POSIX APIs for dealing with threads

● Declared in pthread.h
○ Not part of the C/C++ language (cf. Java)

● To enable support for multithreading, must include
-pthread flag when compiling and linking with gcc
command

53

pthreads Threads: Creation
●

○ Creates a new thread into *thread, with attributes *attr

○ Returns a status code (0 or an error number)

○ The new thread runs start_routine(arg)

●
○ Equivalent of exit(retval) for a thread instead of a process

○ thread automatically exits when it returns from start_routine()

54

int pthread_create(
 pthread_t* thread,
 const pthread_attr_t* attr,
 void* (*start_routine)(void*),
 void* arg);

void pthread_exit(void* retval);

pthreads Threads: Afterwards

●
○ Waits for thread to terminate (equivalent to waitpid, but for threads)

○ Exit status of the terminated thread is placed in **retval

●
○ Mark thread as detached; will clean up its resources as soon as it

terminates

● See thread_example.cc

55

int pthread_detach(pthread_t thread);

int pthread_join(pthread_t thread,
 void** retval);

Wherefore Concurrent Threads?
● Advantages:

○ Almost as simple to code as sequential
■ In fact, most of the code is identical! (but a bit more complicated to dispatch a thread)

○ Concurrent execution with good CPU and network utilization
■ Some overhead, but less than processes

○ Shared-memory communication is possible

● Disadvantages:
○ Shared fate within a process

■ One “rogue” thread can hurt you badly

○ Synchronization is complicated

56

Data Race Example
● If your fridge has no milk,

then go out and buy some more

● What could go wrong?
● If you live alone:

● If you live with a roommate:
57

if (!milk) {
 buy milk
}

! !

Data Race Example
● Idea: leave a note!

○ Does this fix the problem?

A. Yes, problem fixed
B. No, could end up with no milk
C. No, could still buy multiple milk
D. Weʼre lost… 58

if (!note) {
 if (!milk) {
 leave note
 buy milk
 remove note
 }
}

Race Walkthrough

59

if (!note) {
 if (!milk) {
 leave note
 buy milk
 remove note
 }
}

Alice Bob

! note
! milk

! notes
! milk
Leave note
Buy milk
Remove note

Leave note
Buy milk
Remove note

Threads and Data Races
Data races might interfere in painful, non-obvious ways, depending on the specifics of
the data structure

Example: two threads try to read from and write to the same shared memory location
● Could get “correct” answer
● Could accidentally read old value
● One threadʼs work could get “lost”

Example: two threads try to push an item onto the head of the linked list at the same
time
● Could get “correct” answer
● Could get different ordering of items
● Could break the data structure!

60

Synchronization
Synchronization is the act of preventing two (or more) concurrently running threads
from interfering with each other when operating on shared data
● Need some mechanism to coordinate the threads

○ “Let me go first, then you can go”
● Many different coordination mechanisms have been invented

Goals of synchronization:
● Liveness – ability to execute in a timely manner

(informally, “something good happens”)
● Safety – avoid unintended interactions with shared data structures (informally,

“nothing bad happens”)

61

Lock Synchronization
Use a “Lock” to grant access to a critical section so that only one thread can operate
there at a time
● Executed in an uninterruptible (i.e. atomic) manner

Lock Acquire
● Wait until the lock is free,

then take it

Lock Release
● Release the lock
● If other threads are waiting, wake exactly one up to pass lock to

62

// non-critical code

lock.acquire();
// critical section
lock.release();

// non-critical code

loop/idle
if locked

❖ Pseudocode:

Milk Example – What is the Critical Section?
What if we use a lock on the refrigerator?
● Probably overkill – what if roommate

wanted to get eggs?

For performance reasons, only put what is
necessary in the critical section
● Only lock the milk
● But lock all steps that must run

uninterrupted (i.e. must run as an atomic
unit)

63

fridge.lock()
if (!milk) {
 buy milk
}
fridge.unlock()

milk_lock.lock()
if (!milk) {
 buy milk
}
milk_lock.unlock()

pthreads and Locks
Another term for a lock is a mutex (“mutual exclusion”)
pthread.h defines datatype pthread_mutex_t

❖ pthread_mutex_init()

Initializes a mutex with specified attributes

❖ pthread_mutex_lock()
Acquire the lock – blocks if already locked

❖ pthread_mutex_unlock()
Releases the lock

“Uninitializes” a mutex – clean up when done

64

int pthread_mutex_unlock(pthread_mutex_t* mutex);

int pthread_mutex_lock(pthread_mutex_t* mutex);

int pthread_mutex_init(pthread_mutex_t* mutex,
 const pthread_mutexattr_t* attr);

int pthread_mutex_destroy(pthread_mutex_t* mutex);

C++11 Threads
● C++11 added threads and concurrency to its libraries

○ <thread> – thread objects

○ <mutex> – locks to handle critical sections

○ <condition_variable> – used to block objects until notified to
resume

○ <atomic> – indivisible, atomic operations

○ <future> – asynchronous access to data

○ These might be built on top of <pthread.h>, but also might not be

● Definitely use in C++11 code if local conventions allow, but
pthreads will be around for a long, long time

65

Example: Bank
Accounts

Data races
struct Acct {int balance; /*etc…*/ };
int withdraw(struct Acct* a, int amt) {

if (a->balance < amt) return FAIL;
a->balance -= amt; return SUCCESS;

}

This code is correct in a sequential program

It may have a race condition in a concurrent program, allowing for a negative balance

Discovering this bug with testing is very hard

A Data Race - two threads withdraw $100 simultaneously

Thread 1
struct Acct {int balance; /*etc…*/ };
int withdraw(struct Acct* a, int amt) {

if (a->balance < amt) {
return FAIL; }

a->balance -= amt; return SUCCESS;
}

Thread 2

struct Acct {int balance; /*etc…*/ };
int withdraw(struct Acct* a, int amt) {

if (a->balance < amt) {
return FAIL; }

a->balance -= amt; return SUCCESS;
}

Atomic Operations
● An operation we want to be

done all at once
○ No interruptions

● Note: Must be the right size
○ Too big - program runs

sequentially
○ Too small - program has

potential races
● ʻAtomicʼ requires a hardware

primitive

We can wrap the hardware primitive with a lock

In C : ʻmutexʼ

std::mutex BankAccount::m_;
void BankAccount::withdraw(double amount) {

m_.lock();
 if (getBalance() > b) {
 throw std::invalid_argument();
 }
 setBalance(getBalance() - amount);
 m_.unlock();
}

C mutex lock
1. Create a lock for specific data
2. Lock before atomic part of code
3. Unlock after atomic operation

What happens if more than one piece
of code affects the data?

Idea: Use same mutex (ʻmʼ) for each
piece of code that modifies
ʻbalance_ʼ

std::mutex BankAccount::m_;
void BankAccount::withdraw(double amount)
{

m_.lock();
 if (getBalance() > b) {
 throw std::invalid_argument();
 }
 setBalance(getBalance() - amount);
 m_.unlock();
}

Deadlocking
Every piece of code that refers to a
datum calls the lock for that datum

If foo locks D, and then calls bar
which also must lock D, we get a
deadlock - we canʼt progress
because bar can not complete

One solution is to write a helper
function to replace bar -
lockedBar

void BankAccount::withdraw(double amount) {
 m_.lock();
 if (getBalance() < amount) {
 throw std::invalid_argument();
 }
 setBalanceUnderLock(getBalance() - amount);
 m_.unlock();
}

void setBalance(double amount) {
 m_.lock();
 setBalanceUnderLock(amount);
 m_.unlock();
}

void setBalanceUnderLock(double amount) {
 balance_ = amount;
}

Deadlock
Problem:

If every method that modifies
balance_ is locked with
mutex m, that balance can
not be updated.

Solution:

Must create helper function
that allows for modifying
balance_ under the lock.

void BankAccount::withdraw(double amount) {
 m_.lock();
 if (getBalance() < amount) {
 throw std::invalid_argument();
 }
 setBalanceUnderLock(getBalance() - amount);
 m_.unlock();
}

void setBalance(double amount) {
 m_.lock();
 setBalanceUnderLock(amount);
 m_.unlock();
}

void setBalanceUnderLock(double amount) {
 balance_ = amount;
}

C++ Lock Guards
● A “lock guard” is an object that

○ Locks the mutex in the
constructor

○ Unlocks in the destructor
● If the lock guard is added to the

stack it is locked upon creation
● Mutex is unlocked when object is

removed from the stack; even
correctly responding for an
exception.

void deposit(double amount) {

 std::lock_guard<std::mutex> lock(m_);
 // locks mutex m_ in the lock_guard constructor
 // mutex is now locked

 setBalanceWithLock(getBalance() + amount);
 // When deposit() returns,
 // the stack-allocated lock_guard will be deleted,

 // calling the destructor and releasing the mutex.

 }

Another Deadlock
If we have an operation for two
accounts

Must lock the value on each
account.

But what happens if one
transfer is started from
account A to account B while a
simultaneous transfer is
started from account B to
account A?

void transferTo(double amount, BankAccount& other) {
 m_.lock();
 other.m_.lock();

 setBalanceInternal(getBalance() - amount);
 other.setBalanceInternal(other.getBalance() + amount);

 other.m_.unlock();
 m_.unlock();
 }

Thread T1: A.transferTo(50, B);
 m_.lock(); // Locks A's mutex

 other.m_.lock();
// Waits for B's mutex

Thread T2: B.transferTo(20, A);

m_.lock(); // Lock's B's mutex

other.m_.lock()
// Waits for A's mutex

Another Solution
● Use smaller critical sections. Lock A's mutex only around the modification of

A's balance, and lock B's mutex when modifying B's balance.
a. But - we expose an intermediate state in which A's account has been debited but the funds

haven't been put in B's account yet - we've temporarily lost money, which isn't great.

● Use larger critical sections. Add a single lock for all bank accounts that must
be acquired before doing multi-account transactions.

a. But it means that we can only do one transaction at a time throughout the entire bank, even if
the accounts aren't related to each other. This is a performance loss.

● Always lock mutexes in a specific order. We can choose to always lock the
mutex of the account with the lower account id first, then lock the id of the
higher account id. This works because account ids are unique and immutable,
thus we can rely on them without synchronization.

C++ Atomic
Even single line integer operations
(++accountCount) may be subject
to race conditions.

Instead of manually locking and
unlocking every integer operation,
can make the data declaration
std::atomic

Atomic renders that variable safe for
read/write operations.

// In h:
static std::atomic<int> accountCount_;

// In cpp:
BankAccount::BankAccount() {

accountId_ = ++accountCount_;
 balance_ = 0;
}

Other types of locks
There are other types of locks and primitives that are useful, besides the regular mutex, lock guard, and std::atomic:

● Reentrant locks. We had a problem earlier where one function that locked the mutex tried to call another function
that would lock the same mutex, but this didn't work because the first function already had the lock! Use this behavior
with a "reentrant lock": the same thread may re-lock the same lock any number of times. The lock will be released to
a different thread once all of the lock() calls have been correspondingly unlock()'ed. Re-entrant locks can be difficult
to trace.

● Reader-writer locks. All of the problems that we've seen so far have resulted by read/write or write/write
combinations of calls. It is only the writing that causes problem. To improve efficiency, you might use "reader-writer
locks": these allow multiple threads to read the same data at a time, but if any thread tries to write, it will make sure
that no other thread is either reading or writing at the same time. This improves the performance of reads (allowing
them to happen at once) while still maintaining correctness of the program.

● Condition variables. Let's say you are trying to dequeue from a queue, but there's no data in the queue at the
moment. You want to wait until some other thread inserts into the queue, then you can wake up and dequeue that
element! In this case you can use a "condition variable": a primitive that can be used to block a thread until another
thread notifies the condition variable that the waiting condition has been satisfied.

Memory Guidelines
For every memory location, you should obey at least one of the following:

● Make it thread-local. Whenever possible, avoid sharing resources between threads - make a
copy for each thread. If threads do not need to communicate with each other through the
shared resource (for example, a random-number generator), then make it thread-local. In
typical concurrent programs, the vast majority of objects should be thread-local.

○ Shared-memory should be rare - minimize it.
● Make it immutable. Whenever possible, do not update objects; make new objects instead. If

a location is only read (never written), then no synchronization is necessary. Simultaneous
reads are not data races, and not a problem.

○ In practice, programmers over-use mutation - minimize it.
● Make access synchronized, ie use locks and other primitives to prevent race conditions.

Synchronicity
1. No data races. Never allow two threads to read/write or write/write a location at the same time.
2. Think of what operations need to be atomic. Consider atomicity first, then figure out how to implement it with

locks).
3. Consistent locking. For each location that should be synchronized, have a lock that is ALWAYS locked when

reading or writing that location. The same lock may (and often should) be used to guard multiple locations/pieces of
memory. Clearly document with comments the mutex that guards a particular piece of memory.

4. Start with coarse-grained locking; move to finer-grained locking only if blocking for locks becomes an issue.
Coarse-grained locking is the practice of having fewer locks: one for the whole data structure, or one for all bank
accounts. It is simpler to implement, but performance can be bad (fewer operations can be done at the same time).
But if there isn't a lot of concurrent access, then coarse locking is probably fine. Fine-grained locking is the practice
of having more locks, each guarding less data: one lock per data element, or one lock per field in the bank account.
Fine-grained locking is trickier to get correct, requires more programming, and has more overhead (more locks to
lock), but it we can do more things at once.

5. Don't do expensive computations or I/O in critical sections, but also don't introduce race conditions. This
balances performance with correctness.

6. Use built-in libraries whenever possible. Concurrency is extremely tricky and difficult to get right; experts have
spent countless hours building tools for you to use to make your code safe.

