
What do you think? Which lines fail compilation?

❖ Assume a templated MyClass which 

has an (explicit) single-argument 

constructor

❖ MyClass has disabled its copy 

constructor and assignment operator

int main(int argc, char **argv) {
  MyClass<int> x(5);  // line 1
  MyClass<int> y(x);  // line 2
  MyClass<int> z;     // line 3
  z = x;              // line 4
  return EXIT_SUCCESS;
}



CSE 374: Lecture 26
Smart Pointers

Thanks to Hannah Tang & Alex Mckinney



Pair Class Definition

3

#ifndef PAIR_H_
#define PAIR_H_

template <typename Thing> class Pair {
 public:
  Pair() { };

  Thing get_first() const { return first_; }
  Thing get_second() const { return second_; }
  void  set_first(Thing& copyme);
  void  set_second(Thing& copyme);
  void  Swap();

 private:
  Thing first_, second_;
};

#include "Pair.cc"
#endif  // PAIR_H_

Pair.h

Template parameters for class definition

Could be objects, could be 
primitives



Common C++ STL Containers (and Java equiv) 
Sequence containers can be accessed sequentially

● vector<Item> uses a dynamically-sized contiguous array (like ArrayList) 
● list<Item> uses a doubly-linked list (like LinkedList) 

Associative containers use search trees and are sorted by keys 

● set<Key> only stores keys (like TreeSet) 
● map<Key, Value> stores key-value pair<>ʼs (like TreeMap)

Unordered associative containers are hashed 

● unordered_map<Key, Value> (like HashMap)



Smart Pointers



Intro and 
toy_ptr
Smart Pointers 101



C++ Smart Pointers
A smart pointer is an object that stores a pointer to a heap-allocated object

● A smart pointer looks and behaves like a regular C++ pointer

○ By overloading *, ->, [], etc.

● These can help you manage memory

○ The smart pointer will delete the pointed-to object at the right time 
including invoking the objectʼs destructor

■ When that is depends on what kind of smart pointer you use

○ With correct use of smart pointers, you no longer have to remember when to 
delete heap memory!  (If itʼs owned by a smart pointer)

7



A Toy Smart Pointer
We can implement a simple one with:

● A constructor that accepts a pointer

● A destructor that frees the pointer

● Overloaded * and -> operators that access the pointer

A smart pointer is just a Template object. 

8



ToyPtr Class Template

9

ToyPtr.h
#ifndef _TOYPTR_H_
#define _TOYPTR_H_

template <typename T> class ToyPtr {
 public:
  ToyPtr(T* ptr) : ptr_(ptr) { }    // constructor
  ~ToyPtr() { delete ptr_; }        // destructor

Takes advantage of implicit calling of destructor to clean up for us

  T& operator*()  { return *ptr_; }  // * operator
  T* operator->() { return ptr_;  }  // -> operator

 private:
  T* ptr_;                          // the pointer itself
};

#endif  // _TOYPTR_H_



ToyPtr Example

10

usetoy.cc
#include <iostream>
#include "ToyPtr.h"

int main(int argc, char **argv) {
  // Create a dumb pointer
  std::string* leak = new std::string("apple");

  // Create a "smart" pointer (OK, it's still pretty dumb)
  ToyPtr<std::string> notleak(new std::string("banana"));

  std::cout << "     *leak: " << *leak << std::endl;
  std::cout << "  *notleak: " << *notleak << std::endl;
  return 0;
}

apple

banana

leak

notleak



Demo: ToyPtr



ToyPtr Class Template Issues toyuse.cc
#include "ToyPtr.h"

int main(int argc, char **argv) {
  // We want two pointers!
  ToyPtr<int> x(new int(5));
  ToyPtr<int> y = x;
  return 0;
}

5x

y

!! Double delete !!



What Makes This a Toy?
Canʼt handle:
● Arrays 

○ Needs to use delete[]
● Copying
● Reassignment
● Comparison
● … plus many other subtleties…

Luckily, others have built non-toy smart pointers for us!

13



unique_ptr
Smart Pointers pro



std::unique_ptr
A unique_ptr is the sole owner of a pointer
● A template: template parameter is the type that the “owned” pointer references 

(i.e., the T in pointer type T*)
● Part of C++ʼs standard library (C++11)
● Once we give a vanilla pointer a unique_ptr, we should stop using the original 

(non-smart) pointer
● Its destructor invokes delete on the owned pointer

○ Invoked when unique_ptr object is deleteʼd or falls out of scope via the 
unique_ptr destructor

Guarantees uniqueness by disabling copy and assignment. 

15



std::unique_ptr
A unique_ptr is the sole owner of a pointer
● A template: template parameter is the type that the “owned” pointer references 

(i.e., the T in pointer type T*)
● Part of C++ʼs standard library (C++11)
● Once we give a vanilla pointer a unique_ptr, we should stop using the original 

(non-smart) pointer
● Its destructor invokes delete on the owned pointer

○ Invoked when unique_ptr object is deleteʼd or falls out of scope via the 
unique_ptr destructor

Guarantees uniqueness by disabling copy and assignment. 

16



Using unique_ptr
#include <iostream>  // for std::cout, std::endl
#include <memory>    // for std::unique_ptr
#include <cstdlib>   // for EXIT_SUCCESS

void Leaky() {
  int* x = new int(5);  // heap-allocated
  (*x)++;
  std::cout << *x << std::endl;
}  // never used delete, therefore leak

void NotLeaky() {
  std::unique_ptr<int> x(new int(5));  // wrapped, heap-allocated
  (*x)++;
  std::cout << *x << std::endl;
}  // never used delete, but no leak

int main(int argc, char **argv) {
  Leaky();
  NotLeaky();
  return EXIT_SUCCESS;
} 17

unique.cc

6

6

x

x



Why are unique_ptrs useful?
If you have many potential exits out of a function, itʼs easy to forget to call delete on 
all of them
● unique_ptr will delete its pointer when it falls out of scope
● Thus, a unique_ptr also helps with exception safety

18

void NotLeaky() {
  std::unique_ptr<int> x(new int(5));
  ...  
  // lots of code, including several returns
  // lots of code, including potential exception throws
  ...
}



unique_ptrs Cannot Be Copied
std::unique_ptr has disabled its copy constructor and assignment operator
● You cannot copy a unique_ptr, helping maintain “uniqueness” or “ownership”

19

#include <memory>   // for std::unique_ptr
#include <cstdlib>  // for EXIT_SUCCESS

int main(int argc, char **argv) {
  std::unique_ptr<int> x(new int(5));  // OK

  std::unique_ptr<int> y(x);           // fail – no copy ctor

  std::unique_ptr<int> z;              // OK – z is nullptr

  z = x;                               // fail – no assignment op

  return EXIT_SUCCESS;
}

uniquefail.cc



Transferring Ownership
Use reset() and release() to transfer ownership
● release returns the pointer, sets wrapped pointer to nullptr
● reset deleteʼs the current pointer and stores a new one

20

int main(int argc, char **argv) {
  unique_ptr<int> x(new int(5));
  cout << "x: " << x.get() << endl;

  unique_ptr<int> y(x.release());  // x abdicates ownership to y
  cout << "x: " << x.get() << endl;
  cout << "y: " << y.get() << endl;

  unique_ptr<int> z(new int(10));

  // y transfers ownership of its pointer to z.
  // z's old pointer was delete'd in the process.
  z.reset(y.release());
  return EXIT_SUCCESS;
}

uniquepass.cc

5x

5x

y
10z

5x

y
10z



unique_ptr and Arrays
unique_ptr can store arrays as well
● Will call delete[] on destruction

21

#include <memory>   // for std::unique_ptr
#include <cstdlib>  // for EXIT_SUCCESS

using namespace std;

int main(int argc, char **argv) {
  unique_ptr<int[]> x(new int[5]);

  x[0] = 1;
  x[2] = 2;

  return EXIT_SUCCESS;
}

uniquearray.cc



Demo: unique_ptr and Array



Questions?



shared_ptr
weak_ptr

Reference counting and more 
smart pointers…



What is Reference Counting?
Idea: associate a reference count with each object
● Reference count holds number of references (pointers) to the object
● Adjusted whenever pointers are changed:

○ Increase by 1 each time we have a new pointer to an object
○ Decrease by 1 each time a pointer to an object is removed

● When reference counter decreased to 0, no more pointers to the object, so delete it 
(automatically)

Used by C++ shared_ptr, not used in general for C++ memory management

25



Example
Suppose for the moment that we have a new C++ -like language that uses reference 
counting for heap data

As in C++, a struct is a type with public fields, so we can implement lists of integers 
using the following Node type

The reference counts would be handled behind the scenes by the memory manager 
code – they are not accessible to the programmer

26

struct Node {
  int payload;  // node payload
  Node* next;  // next Node or nullptr
};



Example 1
Letʼs execute the following code.  Heap data is shown using rectangles; associated 
reference counts with ovals

27

Node * p = new Node();
Node * q = new Node();
Node * r = p;
q->next = new Node();
p = nullptr;
r = nullptr;
q = nullptr;

p

q

r



Example 1
Letʼs execute the following code.  Heap data is shown using rectangles; associated 
reference counts with ovals

28

p

q

r

1

Node * p = new Node();
Node * q = new Node();
Node * r = p;
q->next = new Node();
p = nullptr;
r = nullptr;
q = nullptr;



Letʼs execute the following code.  Heap data is shown using rectangles; associated 
reference counts with ovals

Example 1

29

p

q

r

1

1

Node * p = new Node();
Node * q = new Node();
Node * r = p;
q->next = new Node();
p = nullptr;
r = nullptr;
q = nullptr;



Letʼs execute the following code.  Heap data is shown using rectangles; associated 
reference counts with ovals

Node * p = new Node();
Node * q = new Node();
Node * r = p;
q->next = new Node();
p = nullptr;
r = nullptr;
q = nullptr;

Example 1

30

p

q

r

2

1



Letʼs execute the following code.  Heap data is shown using rectangles; associated 
reference counts with ovals

Example 1

31

p

q

r

2

1 1

Node * p = new Node();
Node * q = new Node();
Node * r = p;
q->next = new Node();
p = nullptr;
r = nullptr;
q = nullptr;



Letʼs execute the following code.  Heap data is shown using rectangles; associated 
reference counts with ovals

Node * p = new Node();
Node * q = new Node();
Node * r = p;
q->next = new Node();
p = nullptr;
r = nullptr;
q = nullptr;

Example 1

32

p

q

r

1

1 1



Letʼs execute the following code.  Heap data is shown using rectangles; associated 
reference counts with ovals

Node * p = new Node();
Node * q = new Node();
Node * r = p;
q->next = new Node();
p = nullptr;
r = nullptr;
q = nullptr;

Example 1

33

p

q

r

0

1 1



Letʼs execute the following code.  Heap data is shown using rectangles; associated 
reference counts with ovals

Node * p = new Node();
Node * q = new Node();
Node * r = p;
q->next = new Node();
p = nullptr;
r = nullptr;
q = nullptr;

Example 1

34

p

q

r

0 10



std::shared_ptr
shared_ptr is similar to unique_ptr but we allow shared objects to have 
multiple owners

● The copy/assign operators are not disabled and increment reference counts as 
needed
○ After a copy/assign, the two shared_ptr objects point to the same 

pointed-to object and the (shared) reference count is incremented by 1
● When a shared_ptr is destroyed, the reference count is decremented

○ When the reference count hits 0, we delete the pointed-to object!
● Allows us to create complex linked structures (double-linked lists, graphs, etc.) at 

the cost of maintaining reference counts

35



shared_ptr Example

36

#include <cstdlib>   // for EXIT_SUCCESS
#include <iostream>  // for std::cout, std::endl
#include <memory>    // for std::shared_ptr

int main(int argc, char **argv) {
  std::shared_ptr<int> x(new int(10));  // ref count: 1

  // temporary inner scope with local y (!)
  {  
    std::shared_ptr<int> y = x;         // ref count: 2
    std::cout << *y << std::endl;
  }                                     // exit scope, y deleted

  std::cout << *x << std::endl;         // ref count: 1

  return EXIT_SUCCESS;
}                                       // ref count: 0

shared.cc

10x

y



shared_ptrs and STL Containers
Safe to store shared_ptrs in containers, since copy & assign maintain a shared 
reference count; Also avoid extra object copies

37

vector<std::shared_ptr<int>> vec;

vec.push_back(std::shared_ptr<int>(new int(9)));
vec.push_back(std::shared_ptr<int>(new int(5)));
vec.push_back(std::shared_ptr<int>(new int(7)));

int& z = *vec[1];
std::cout << "z is: " << z << std::endl;

std::shared_ptr<int> copied = vec[1];  // works!
std::cout << "*copied: " << *copied << std::endl;

vec.pop_back();  // removes smart ptr & deallocate 7

sharedvec.cc



Demo: shared_ptr and STL 



Questions?



Example 2
Similar to the previous code, but slightly different

40

Node * q = new Node();
Node * r = new Node();
q->next = r;
r->next = q;
r = nullptr;
q = nullptr;

q

r



Similar to the previous code, but slightly different

Node * q = new Node();
Node * r = new Node();
q->next = r;
r->next = q;
r = nullptr;
q = nullptr;

Example 2

41

q

r

1



Similar to the previous code, but slightly different

Example 2

42

q

r

1 1

Node * q = new Node();
Node * r = new Node();
q->next = r;
r->next = q;
r = nullptr;
q = nullptr;



Similar to the previous code, but slightly different

Node * q = new Node();
Node * r = new Node();
q->next = r;
r->next = q;
r = nullptr;
q = nullptr;

Example 2

43

q

r

1 2



Similar to the previous code, but slightly different

Node * q = new Node();
Node * r = new Node();
q->next = r;
r->next = q;
r = nullptr;
q = nullptr;

Example 2

44

q

r

2 2



Similar to the previous code, but slightly different

Node * q = new Node();
Node * r = new Node();
q->next = r;
r->next = q;
r = nullptr;
q = nullptr;

Example 2

45

q

r

2 1



Similar to the previous code, but slightly different

Node * q = new Node();
Node * r = new Node();
q->next = r;
r->next = q;
r = nullptr;
q = nullptr;

Example 2

46

q

r

1 1
Memory leak!



Cycle of shared_ptrs 

What happens when we delete 
head?

47

#include <cstdlib>
#include <memory>

using std::shared_ptr;

struct A {
  shared_ptr<A> next;
  shared_ptr<A> prev;
};

int main(int argc, char **argv) {
  shared_ptr<A> head(new A());
  head->next = shared_ptr<A>(new A());
  head->next->prev = head;

  return EXIT_SUCCESS;
}

sharedcycle.cc

next

prev

next

prev

head

 

 

12



Cycle of shared_ptrs 

What happens when we delete 
head?  Nodes unreachable but 
not deleted because ref counts > 0

48

#include <cstdlib>
#include <memory>

using std::shared_ptr;

struct A {
  shared_ptr<A> next;
  shared_ptr<A> prev;
};

int main(int argc, char **argv) {
  shared_ptr<A> head(new A());
  head->next = shared_ptr<A>(new A());
  head->next->prev = head;

  return EXIT_SUCCESS;
}

next

prev

next

prev

head

 

 

11

sharedcycle.cc



std::weak_ptr
weak_ptr is similar to a shared_ptr but doesnʼt affect the reference count
● Can only “point to” an object that is managed by a shared_ptr
● Not really a pointer – canʼt actually dereference unless you “get” its associated 

shared_ptr

● Because it doesnʼt influence the reference count, weak_ptrs can become 
“dangling”
○ Object referenced may have been deleteʼd
○ But you can check to see if the object still exists

Can be used to break our cycle problem!

49



Breaking the Cycle with weak_ptr

Now what happens when we 
delete head?

50

#include <cstdlib>
#include <memory>

using std::shared_ptr;
using std::weak_ptr;

struct A {
  shared_ptr<A> next;
  weak_ptr<A> prev;
};

int main(int argc, char **argv) {
  shared_ptr<A> head(new A());
  head->next = shared_ptr<A>(new A());
  head->next->prev = head;
  return EXIT_SUCCESS;
}

weakcycle.cc

next

prev

next

prev

head

 

 

11



Breaking the Cycle with weak_ptr

Now what happens when we 
delete head? Ref counts go to 0 
and nodes deleted!

51

#include <cstdlib>
#include <memory>

using std::shared_ptr;
using std::weak_ptr;

struct A {
  shared_ptr<A> next;
  weak_ptr<A> prev;
};

int main(int argc, char **argv) {
  shared_ptr<A> head(new A());
  head->next = shared_ptr<A>(new A());
  head->next->prev = head;
  return EXIT_SUCCESS;
}

weakcycle.cc

next

prev

next

prev

head

 

 

00



Using a weak_ptr

52

#include <cstdlib>   // for EXIT_SUCCESS
#include <iostream>  // for std::cout, std::endl
#include <memory>    // for std::shared_ptr, std::weak_ptr
int main(int argc, char **argv) {
  std::weak_ptr<int> w;
  {  // temporary inner scope with local x
    std::shared_ptr<int> x;
    {  // temporary inner-inner scope with local y
      std::shared_ptr<int> y(new int(10));
      w = y;         // weak ref; ref count for “10” node is same
      x = w.lock();  // get "promoted" shared_ptr, ref cnt = 2
      std::cout << *x << std::endl;
    } // y deleted; ref count now 1
    std::cout << *x << std::endl;
  }                  // x deleted; ref count now 0; mem freed
  std::shared_ptr<int> a = w.lock();  // nullptr
  std::cout << a << std::endl;        // output is 0 (null)
  return EXIT_SUCCESS;
}

usingweak.cc

10y

x

w



Demo: weak_ptr fixed code



Lecture Summary
A unique_ptr takes ownership of a pointer
● Cannot be copied, but can be moved
● Use release() to release ownership and stop managing the pointer for you
● reset() deletes old pointer value and stores a new one

A shared_ptr allows shared objects to have multiple owners by doing reference 
counting
● deletes an object once its reference count reaches zero

A weak_ptr works with a shared object but doesnʼt affect the reference count
● Canʼt actually be dereferenced, but can check if the object still exists and can get 

a shared_ptr from the weak_ptr if it does

54



Some Important Smart Pointer Functions
std::unique_ptr U;
● U.get() Returns the raw pointer U is managing (⚠Dangerous!)
● U.release() U stops managing its raw pointer and returns the raw pointer
● U.reset(q) U cleans up its raw pointer and takes ownership of q
std::shared_ptr S; 
● make_shared<T>(args) Returns a shared_ptr pointer of a heap-allocated object 

shared_ptr<int> p3 = make_shared<int>(42);
● S.use_count() Returns the reference count
● S.unique() Returns true iff S.use_count() == 1
std::weak_ptr W; 
● W.lock() Constructs a shared pointer based off of W and returns it
● W.use_count() Returns the reference count
● W.expired() Returns true iff W is expired (W.use_count() == 0)



Questions?



Caution
Smart pointers are smart… ?🧐



“Smart” Pointers
Smart pointers still donʼt know everything, you must be careful with what pointers you 
give it to manage. 

● Smart pointers canʼt tell if a pointer is on the heap or not. 
● Still uses delete on default. 
● Smart pointers canʼt tell if you are re-using a raw pointer.
● Donʼt point smart pointers at the stack.



Using a non-heap pointer
Smart pointers canʼt tell if the pointer 
you gave points to the heap!

● Will still call delete on the pointer 
when destructed.

#include <cstdlib>
#include <memory>

using std::shared_ptr;
using std::weak_ptr;

int main(int argc, char **argv) {
int x = 374;
shared_ptr<int> p1(&x);
return EXIT_SUCCESS;

}



Re-using a raw pointer
Smart pointers canʼt tell if you are 
re-using a raw pointer.

#include <cstdlib>
#include <memory>

using std::unique_ptr;

int main(int argc, char **argv) {
    int* x = new int(374);

    unique_ptr<int> p1(x);

    unique_ptr<int> p2(x);

    return EXIT_SUCCESS;
}

374p1

p2

Double delete!



Re-using a raw pointer
Smart pointers canʼt tell if you are 
re-using a raw pointer.

#include <cstdlib>
#include <memory>

using std::shared_ptr;

int main(int argc, char **argv) {
    int* x = new int(374);

    shared_ptr<int> p1(x);

    shared_ptr<int> p2(x);

    return EXIT_SUCCESS;
}

374p1

p2

Double delete!



Automatic memory management
Different paradigms

Tracing (mark & sweep) Reference counting

Method Mark all variables reachable from 
root objects, then sweep remaining 
ones

Automatically frees memory 
when ref_count == 0

Language Java C++ w/ Smart Pointers

Perf cost Running the garbage collector can 
pause the entire program

Added overhead to every 
allocation/deallocation and 
assignment

Possible 
issues

Dangling references, GC behavior 
might be unpredictable

Cycles, overhead


