What do you think? Which lines fail compilation?

B

Assume a templated MyC1lass which
has an (explicit) single-argument
constructor

MyClass has disabled its copy
constructor and assignment operator

int main(int argc, char **argv
MyClass<int> x(5); // line

)
1
MyClass<int> y(x); // line 2
3
4

MyClass<int> z; // line

7 = X; // line
return EXIT SUCCESS;

CSE 374: Lecture 26

Smart Pointers

Thanks to Hannah Tang & Alex Mckinney

Pair Class Definition

Pair.h

(#ifndef PAIR H
#define PAIR H

public:
Pair () { };

void Swap();

private:
Thing first ,
}i

Template parameters for class definition

/

Thing get first() const
Thing get second()
void set first(Thingé& copyme);
void set second(Thingé& copyme);

<«— | primitives

second_;

#include "Pair.cc"
k#endif // PAIR H

template <typename Thing> class Pair {

{ return first ; }

const { return second ; }

Could be objects, could be

Common C++ STL Containers (and Java equiv)

Sequence containers can be accessed sequentially

e vector<Item> usesadynamically-sized contiguous array (like ArrayList)
e list<Item> usesadoubly-linked list (like LinkedList)

Associative containers use search trees and are sorted by keys

e set<Key>onlystores keys (like TreeSet)
e map<Key, Value> storeskey-value pair<>’s (like TreeMap)

Unordered associative containers are hashed

e unordered map<Key, Value> (like HashMap)

Smart Pointers

Intro and
toy ptr

Smart Pointers 101

C++ Smart Pointers

A smart pointer is an object that stores a pointer to a heap-allocated object
e Asmart pointer looks and behaves like a regular C++ pointer
o Byoverloading *, ->, [], etc.
e These can help you manage memory

o The smart pointer will delete the pointed-to object at the right time
including invoking the object’s destructor

m When thatis depends on what kind of smart pointer you use

o With correct use of smart pointers, you no longer have to remember when to
delete heap memory! (/fit’s owned by a smart pointer)

A Toy Smart Pointer

We can implement a simple one with:
e A constructor that accepts a pointer
e Adestructor that frees the pointer

e Overloaded * and —> operators that access the pointer

A smart pointer is just a Template object.

ToyPtr Class Template

ToyPtr.h

(4ifndef TOYPTR H_
tdefine TOYPTR H_

template <typename T> class ToyPtr {

public:
ToyPtr (T* ptr) : ptr (ptr) { } // constructor
~ToyPtr () { delete ptr ; } // destructor
Takes advantage of implicit calling of destructor to clean up for us
T& operator* () { return *ptr ; } // * operator
T* operator->() { return ptr ; Y // -> operator
private:
T* ptr ; // the pointer itself

b g

| #endif // _TOYPTR H_

ToyPtr Example usetoy.cc

#include <iostream>
#include "ToyPtr.h"

int main(int argc, char **argv) {
// Create a dumb pointer
std::string* leak = new std::string ("apple");

// Create a "smart" pointer (OK, it's still pretty dumb)
ToyPtr<std::string> notleak (new std::string ("banana")):;

std::cout << " *leak: " << *leak << std::endl;
std: :cout << " *notleak: " << *notleak << std::endl;
return 0;

leak 01—+ apple

N

notleak | ;

v/

ana

10

Demo: ToyPtr

ToyPtr Class Template Issues toyuse.cc

#include "ToyPtr.h"

int main(int argc, char **argv) {
// We want two pointers!
ToyPtr<int> x(new int (5));
ToyPtr<int> y = x;
return 0;

\ Il Double delete !!

N
I

What Makes This a Toy?

Can’t handle:

e Arrays
o Needstousedeletel[]
Copying
Reassignment
Comparison
... plus many other subtleties...

Luckily, others have built non-toy smart pointers for us!

13

unique ptr

Smart Pointers pro

std: :unique ptr

Aunique ptristhe sole owner of a pointer

e Atemplate: template parameter is the type that the “owned” pointer references
(i.e., the T in pointer type T *)

e Part of C++’s standard library (C++11)

e Once we give avanilla pointer a unique_ptr, we should stop using the original
(non-smart) pointer

e Itsdestructorinvokes delete onthe owned pointer

o Invoked whenunique ptr objectisdelete’d orfalls out of scope viathe
unique ptr destructor

Guarantees uniqueness by disabling copy and assignment.

15

std: :unique ptr

Aunique ptristhe sole owner of a pointer

e Atemplate: template parameter is the type that the “owned” pointer references
(i.e., the T in pointer type T *)

e Part of C++’s standard library (C++11)

e Once we give a vanilla pointer a unique_ptr, we should stop using the original
(non-smart) pointer

e Itsdestructorinvokes delete onthe owned pointer

o Invoked whenunique ptr objectisdelete’d orfalls out of scope viathe
unique ptr destructor

Guarantees uniqueness by disabling copy and assignment.

16

Using unique ptr

void NotLeaky () {
std::unique ptr<int> x(new 1int(5));
(5] ;
std::cout << *x << std::endl;
} // never used delete, but no leak
int main(int argc, char **argv) {
Leaky () ;
NotLeaky () ;
return EXIT SUCCESS;

}

.

unique.cc
r#include <iostream> // for std::cout, std::endl R
#include <memory> // for std::unique ptr
#include <cstdlib> // for EXIT SUCCESS
void Leaky () {
int* x = new int(5); // heap-allocated ~
(*x) ++; W \—, 6
std::cout << *x << std::endl; N
} // never used delete, therefore leak N
X \6\\

// wrapped, heap-allocated

17

Why are unique ptrs useful?
If you have many potential exits out of a function, it’s easy to forget to call delete on
all of them

e unique ptrwilldelete its pointer when it falls out of scope

e Thus,aunique ptr also helps with exception safety

rvoid NotLeaky () {
std::unique ptr<int> x(new int(5));

// lots of code, including several returns
// lots of code, including potential exception throws

18

unique ptrs Cannot Be Copied

std: :unique ptr hasdisabled its copy constructor and assignment operator

e Youcannotcopyaunique ptr, helping maintain “uniqueness” or “ownership”
uniguefail.cc
\

p
#include <memory> // for std::unique ptr
#include <cstdlib> // for EXIT SUCCESS

int main(int argc, char **argv) {

std::unique ptr<int> x(new int(5)); // OK

std::unique ptr<int> y(x); // fail - no copy ctor
std::unique ptr<int> z; // OK — z is nullptr

zZ = X; // fail - no assignment op

return EXIT SUCCESS;

L} J

19

Transferring Ownership

Use reset () and release () to transfer ownership

e release returnsthe pointer, sets wrapped pointertonullptr
e resetdelete’sthe current pointer and stores a new one

uniquepass.cc

rint main (int argc, char **argv) {

z.reset(y.release());
return EXIT SUCCESS;

// y transfers ownership of its pointer to z.
// z's old pointer was delete'd in the process.

unique ptr<int> x(new int(5)); X G_> 5
cout << "x: " << x.get() << endl;
unique ptr<int> y(x.release()); // x abdicates ownership to y
cout << "x: " << x.get() << endl; X EES 5
cout << "y: " << y.get() << endl;
unique ptr<int> z(new int(10)); y
Z

\

unique ptr and Arrays

unique ptr can store arrays as well

e Willcalldelete[] ondestruction

uniquearray.cc

#include <memory> // for std::unique ptr
#include <cstdlib> // for EXIT SUCCESS

using namespace std;

int main(int argc, char **argv) {
unique ptr<int[]> x(new int[5]);

x[2] = 2;

return EXIT SUCCRSS;
}

\

21

Demo: unique ptr and Array

Questions?

shared;ptr
weak_ptr

Reference counting and more
smart pointers...

What is Reference Counting?

|dea: associate a reference count with each object

e Reference count holds number of references (pointers) to the object
e Adjusted whenever pointers are changed:

o Increase by 1 each time we have a new pointer to an object
o Decrease by 1 each time a pointer to an object is removed

e When reference counter decreased to 0, no more pointers to the object, so delete it
(automatically)

Used by C++ shared_ptr, not used in general for C++ memory management

25

Example
Suppose for the moment that we have a new C++ -like language that uses reference
counting for heap data

Asin C++, a struct is a type with public fields, so we can implement lists of integers
using the following Node type

struct Node {
int payload; // node payload

Node* next; // next Node or nullptr
i

The reference counts would be handled behind the scenes by the memory manager
code - they are not accessible to the programmer

Example 1

Let’s execute the following code. Heap data is shown using rectangles; associated
reference counts with ovals

Y
q

r

—>(Node * p = new Node();)

Node * g = new Node () ;
Node * r = p;
g->next = new Node() ;
p = nullptr;
r = nullptr;
g = nullptr;

. J

27

Example 1

Let’s execute the following code. Heap data is shown using rectangles; associated
reference counts with ovals

D

rNode * p = new Node()
—>Node * g = new Node();
Node * r = p;
g->next = new Node() ;
p = nullptr;
r = nullptr;
g = nullptr;

. J

Example 1

Let’s execute the following code. Heap data is shown using rectangles; associated
reference counts with ovals

D
q L] D

rNode * p = new Node()
Node * g = new Node () ;
—.FNode *r = p;
g->next = new Node() ;
p = nullptr;
r = nullptr;
g = nullptr;

. J

Example 1

Let’s execute the following code. Heap data is shown using rectangles; associated
reference counts with ovals

@,
q L] D

Node * p = new Node();
Node * g = new Node () ;
Node * r = p;
= ¢->next = new Node () ;
p = nullptr;
r = nullptr;
q = nullptr;

. J

Example 1

Let’s execute the following code. Heap data is shown using rectangles; associated
reference counts with ovals

@)

p.'

q[e D D
o —>

r

Node * p = new Node();
Node * g = new Node () ;
Node * r = p;
g->next = new Node() ;
—>* p = nullptr;
r = nullptr;
g = nullptr;

. J

31

Example 1

Let’s execute the following code. Heap data is shown using rectangles; associated
reference counts with ovals

D
qle D D

Node * p = new Node();
Node * g = new Node () ;
Node * r = p;
g->next = new Node() ;
p = nullptr;

—» r = nullptr;

g = nullptr;

. J

Example 1

Let’s execute the following code. Heap data is shown using rectangles; associated
reference counts with ovals

©

p
q L] D D
v o>

Node * p = new Node();
Node * g = new Node () ;
Node * r = p;
g->next = new Node() ;
p = nullptr;
r = nullptr;

_kq = nullptr;)

33

Example 1

Let’s execute the following code. Heap data is shown using rectangles; associated
reference counts with ovals

q)

Node * p = new Node();
Node * g = new Node () ;
Node * r = p;
g->next = new Node() ;
p = nullptr;
r = nullptr;
g = nullptr;

5 4

std::shared_ptr

shared ptrissimilartounique ptr butwe allow shared objects to have
multiple owners

e The copy/assign operators are not disabled and increment reference counts as
needed
o After a copy/assign, the two shared ptr objects point to the same
pointed-to object and the (shared) reference count is incremented by 1
e Whenashared ptrisdestroyed, the reference countis decremented
o When the reference count hits 0, we delete the pointed-to object!

e Allows us to create complex linked structures (double-linked lists, graphs, etc.) at

the cost of maintaining reference counts

35

shared ptr Example

shared.cc

7

#include <cstdlib>
#include <iostream>
#include <memory>

//
//
//

for std::cout,

int main(int argc, char **argv) {
std: :shared ptr<int> x(new 1int(10));

// temporary inner scope with local y

{
std::shared ptr<int> y = x;
std::cout << *y << std::endl;

}

std: :cout << *x << std::endl;

return EXIT SUCCRSS;

}

\

for EXIT SUCCESS
std: :endl
for std::shared ptr

i}

N\

// ref count: 1

(!)

2

// ref count:

// exit scope, y deleted

// ref count: 1

// ref count: 0

36

shared ptrsand STL Containers

Safe to store shared ptrsin containers, since copy & assign maintain a shared
reference count; Also avoid extra object copies

7

vector<std::shared ptr<int>> vec;

sharedvec.cc

N

vec.push back (std::shared ptr<int>(new int(9)));
vec.push back (std::shared ptr<int>(new int(5)));

vec.push back (std::shared ptr<int>(new int(7)));
int& z = *vec|[l];

std::cout << "z 1is: " << z << std::endl;
std::shared ptr<int> copied = vec[l]; // works!
std::cout << "*copied: " << *copied << std::endl;

vec.pop back(); // removes smart ptr & deallocate 7

37

Demo: shared ptr and STL

Questions?

Example 2

Similar to the previous code, but slightly different

—>£Node * g = new Node();

Node * r = new Node () ;
g->next = r;
r->next = gy

r = nullptr;
g = nullptr;

40

Example 2

Similar to the previous code, but slightly different

D

q @
r
rNode * g = new Node();
—>Node * r = new Node () ;
g->next = r;
r->next = gy
r = nullptr;
g = nullptr;

Example 2

Similar to the previous code, but slightly different

D D

q @
r @
rNode * g = new Node();
Node * r = new Node () ;
+ g->next = r;
r->next = gy
r = nullptr;
g = nullptr;

Example 2

Similar to the previous code, but slightly different

D @)

..
q @
r @
rNode * g = new Node();
Node * r = new Node () ;
g->next = r;

—»r r->next = qg;

r = nullptr;
g = nullptr;

\

Example 2

Similar to the previous code, but slightly different

@) @)

o ®
q @
r @
rNode * g = new Node();
Node * r = new Node () ;
g->next = r;
r->next = gy
=g r = nullptr;
g = nullptr;

Example 2

Similar to the previous code, but slightly different

@) D

q.‘
r LA
rNode * g = new Node();
Node * r = new Node () ;
g->next = r;
r->next = gy
= nullptr;

r
—.t g = nullptr;

Example 2

Similar to the previous code, but slightly different

D

e —

D

Memory leak!

q
r 4
rNode * g = new
Node * r = new
g->next = r;
r->next = gy
r = nullptr;
—.tq = nullptr;

Node () ;
Node () ;

46

Cycle of shared ptrs

sharedcycle.cc

\

#include <cstdlib>
#include <memory>

using std::shared ptr;

struct A {
shared ptr<A> next;
shared ptr<A> prev;
Y

int main(int argc, char **argv) {
shared ptr<A> head(new A());
head->next = shared ptr<A>(new A());
head->next->prev = head;

return EXIT SUCCESS;
}

head

1

next

prev

What happens when we delete
head?

47

Cycle of shared ptrs

sharedcycle.cc

\

#include <cstdlib>
#include <memory>

using std::shared ptr;

struct A {
shared ptr<A> next;
shared ptr<A> prev;
Y

int main(int argc, char **argv) {
shared ptr<A> head(new A());
head->next = shared ptr<A>(new A());
head->next->prev = head;

return EXIT SUCCESS;
}

head

1

prev

next

What happens when we delete
head? Nodes unreachable but
not deleted because ref counts >0

48

std: :weak_ptr

weak ptrissimilartoashared ptr butdoesn’t affect the reference count
e Canonly “pointto” an object that is managed by a shared ptr

e Notreally a pointer - can’t actually dereference unless you “get” its associated
shared ptr

e Becauseitdoesn’tinfluence the reference count, weak ptrscanbecome
“dangling”

o Object referenced may have been delete’d

o Butyou can check to see if the object still exists

Can be used to break our cycle problem!

49

Breaking the Cycle with weak ptr

weakcycle.cc

\

#include <cstdlib>
#include <memory>

using std::shared ptr;
using std::weak ptr;

struct A {
shared ptr<A> next;
weak ptr<A> prev;
}i

int main(int argc, char **argv) {
shared ptr<A> head(new A());
head->next = shared ptr<A>(new A());
head->next->prev = head;
return EXIT SUCCESS;

}

| head

1 1
r———=—-=-== 1 r———=—=-=--=
I I I
: | next : : | next
I I4 I ®
i | prev @ I i | prev
I I

Now what happens when we
delete head?

50

Breaking the Cycle with weak ptr

\

weakcycle.cc

#include <cstdlib>
#include <memory>

using std::shared ptr;
using std::weak ptr;

struct A {
shared ptr<A> next;
weak ptr<A> prev;
}i

int main(int argc, char **argv) {
shared ptr<A> head(new A());
head->next = shared ptr<A>(new A());
head->next->prev = head;
return EXIT SUCCESS;

}

| head

0 0
T T T al T T T al
| i | |
: | next : : | next :
I |< I o !
i | prev @ I i | prev I
| i | |

Now what happens when we
delete head? Ref counts goto 0
and nodes deleted!

51

Us'“g a Weak_Ptr usingweak.cc

[#include <cstdlib> // for EXIT SUCCESS
#include <iostream> // for std::cout, std::endl

#include <memory> // for std::shared ptr, std::weak ptr (===
int main(int argc, char **argv) ({ W ;EEQU
std::weak ptr<int> w; ===t
{ // temporary inner scope with local x X N
std::shared ptr<int> x; *
{ // temporary inner-inner scope with local y
std::shared ptr<int> y(new int (10)); y .

w o= y; // weak ref; ref count for “10” node 1is same
x = w.lock(); // get "promoted" shared ptr, ref cnt = 2
std::cout << *x << std::endl;

} // y deleted; ref count now I

std::cout << *x << std::endl;

} // x deleted; ref count now 0; mem freed
std::shared ptr<int> a = w.lock(); // nullptr
std::cout << a << std::endl; // output is 0 (null)

return EXIT SUCCESS;

Demo: weak ptr fixed code

Lecture Summary

Aunique ptr takes ownership of a pointer

e Cannot be copied, but can be moved

e Userelease () torelease ownership and stop managing the pointer for you
e reset () deletesold pointervalue and stores a new one

A shared ptr allows shared objects to have multiple owners by doing reference
counting

e deletesanobjectonce its reference count reaches zero

Aweak ptr works with a shared object but doesn’t affect the reference count

e Can’tactually be dereferenced, but can check if the object still exists and can get
a shared ptrfromtheweak ptrifitdoes

54

Some Important Smart Pointer Functions

std: :unique ptr U;

e U.get() Returns the raw pointer U is managing (A\ Dangerous!)
e U.release() U stops managing its raw pointer and returns the raw pointer
e U.reset(q) U cleans up its raw pointer and takes ownership of g
std: :shared ptr S;
¢ make shared<T>(args) Returns a shared ptrpointer of a heap-allocated object
shared ptr<int> p3 = make shared<int> (42);
® S.use count() Returns the reference count
e S.unique() Returns true iff S.use_count() ==
std: :weak ptr W;
e W.lock() Constructs a shared pointer based off of W and returns it
® I.use count() Returns the reference count

® Wexpired() Returns true iff W is expired (W.use_count() == 0)

Questions?

Caution

Smart pointers are smart... 769

“Smart” Pointers

Smart pointers still don’t know everything, you must be careful with what pointers you
give it to manage.

Smart pointers can’t tell if a pointer is on the heap or not.
Still uses delete on default.

Smart pointers can’t tell if you are re-using a raw pointer.
Don’t point smart pointers at the stack.

Using a non-heap pointer

finclude <cstdlib> Smart pointers can’t tell if the pointer
#include <memory>

you gave points to the heap!
using std::shared ptr;

, e Will still call delete on the pointer
using std::weak ptr;

when destructed.
int main(int argc, char **argv) {
int x = 374;
shared ptr<int> pl (&x);
return EXIT SUCCESS;

Re-using a raw pointer

r#include <cstdlib>

Smart pointers can’t tell if you are
#include <memory>

re-using a raw pointer.

using std::unique ptr;

int main(int argc, char **argv) {
int* x = new int(374); pl 3

unique ptr<int> pl (x);

unique ptr<int> p2(x); p2 \\\\

I
return EXIT SUCCESS; Double delete!

Re-using a raw pointer

r#include <cstdlib>

Smart pointers can’t tell if you are
#include <memory>

re-using a raw pointer.
using std::shared ptr;

int main(int argc, char **argv) {
int* x = new int(374); pl 3

shared ptr<int> pl(x);

shared ptr<int> p2(x); p2 \\\\

I
return EXIT SUCCESS; Double delete!

Automatic memory management

Different paradigms

Method

Language

Perf cost

Possible
issues

Tracing (mark & sweep)

Mark all variables reachable from
root objects, then sweep remaining
ones

Java

Running the garbage collector can
pause the entire program

Dangling references, GC behavior
might be unpredictable

Reference counting

Automatically frees memory
when ref count ==

C++ w/ Smart Pointers

Added overhead to every
allocation/deallocation and
assignment

Cycles, overhead

