
What do you think? Which functions do we use?
Given that:



CSE 374: Lecture 25
Templates

Thanks to Hannah Tang & Alex Mckinney



Review: new/delete 
To allocate on the heap using C++, you use the new keyword
● You can use new to allocate an object (e.g. new Point)
● You can use new to allocate a primitive type (e.g. new int)
● When allocating you can specify a constructor or initial value

○ (e.g. new Point(1, 2)) or (e.g. new int(333))
● If no initialization specified, it will use default constructor for objects, garbage for 

primitives (integer, float, character, boolean, double)
○ You donʼt need to check that new returns nullptr

To deallocate a heap-allocated object or primitive, use the delete keyword instead 
of free() from stdlib.h

● Donʼt mix and match!



Review: Dynamically Allocated Arrays
To dynamically allocate an array:

● Default initialize:

To dynamically deallocate an array:

● Use delete[] name;
● It is an incorrect to use “delete name;” on an array

○ The compiler probably wonʼt catch this, though (!) because it canʼt always 
tell if name* was allocated with new type[size]; or new type;
■ Especially inside a function where a pointer parameter could point to a 

single item or an array and thereʼs no way to tell which!
○ Result of wrong delete is undefined behavior

4

type* name = new type[size];

delete[] name;



Pure virtual methods and interfaces (?)
● A C++ “pure virtual” method is like a Java “abstract” method.

○ Subclass must override because there is no definition in base class

● Makes sense with dynamic dispatch
● Funny syntax in base class; override as usual: 

class C { 
virtual t0 m(t1,t2,...,tn) = 0; 
... 

};

● Side-comment: with multiple inheritance and pure-virtual methods, no need for a 
separate notion of Java-style interfaces 



(Up) casting
● An object of a derived class cannot be cast to an object of a base class.

○ For the same reason a struct T1 {int x,y,z;} cannot be cast to type 
struct T2 {int x,y;} (different size)

● A pointer to an object of a derived class can be cast to a pointer to an 
object of a base class.
○ For the same reason a struct T1* can be cast to type struct T2* (pointers 

to a location in memory)
○ (Story not so simple with multiple inheritance)

● After such an upcast, field-access works fine (prefix)
○ but what do method calls mean in the presence of overriding? (see virtual)



(Down) casting
● C pointer-casts: unchecked; be careful
● Java: checked; may raise ClassCastException 
● New:  C++ has “all the above” (several different kinds of casts)

○ If you use single-inheritance and know what you are doing, the C-style 
casts (same pointer, assume more about what is pointed to) should 
work fine for downcasts

○ Worth learning about the differences on your own 



Template



Suppose that…
● You want to write a function to compare two ints
● You want to write a function to compare two strings

○ Function overloading!

9

// returns 0 if equal, 1 if value1 is bigger, -1 otherwise
int compare(const int& value1, const int& value2) {
  if (value1 < value2) return -1;
  if (value2 < value1) return  1;
  return 0;
}

// returns 0 if equal, 1 if value1 is bigger, -1 otherwise
int compare(const string& value1, const string& value2) {
  if (value1 < value2) return -1;
  if (value2 < value1) return  1;
  return 0;
}



Hm…
The two implementations of compare are nearly identical!

● What if we wanted a version of compare for every comparable type?  
● We could write (many) more functions, but thatʼs obviously wasteful and 

redundant
○ Too much repeated code!

What weʼd prefer to do is write “generic code”

● Code that is type-independent
● Code that is compile-type polymorphic across types

10



C++ Parametric Polymorphism
C++ has the notion of templates (often referred to as generics elsewhere)

● A function or class that accepts a type as a parameter
○ You define the function or class once in a type-agnostic way
○ When you invoke the function or instantiate the class, you specify (one or 

more) types or values as arguments to it

● At compile-time, the compiler will generate the “specialized” code from your 
template using the types you provided
○ Your template definition is NOT runnable code
○ Code is only generated if you use your template

11



Function Templates
Template to compare two “things”:

12

#include <iostream>
#include <string>

// returns 0 if equal, 1 if value1 is bigger, -1 otherwise
template <typename T>   // <...> can also be written <class T>
int compare(const T& value1, const T& value2) {
  if (value1 < value2) return -1;
  if (value2 < value1) return  1;
  return 0;
}

int main(int argc, char **argv) {
  std::string h("hello"), w("world");
  std::cout << compare<int>(10, 20) << std::endl;
  std::cout << compare<std::string>(h, w) << std::endl;
  std::cout << compare<double>(50.5, 50.6) << std::endl;
  return EXIT_SUCCESS;
}

functiontemplate.cc

Only uses operator < to minimize requirements on T

Explicit type argument



Compiler Inference
Same thing, but letting the compiler infer the types:

13

#include <iostream>
#include <string>

// returns 0 if equal, 1 if value1 is bigger, -1 otherwise
template <typename T> 
int compare(const T& value1, const T& value2) {
  if (value1 < value2) return -1;
  if (value2 < value1) return  1;
  return 0;
}

int main(int argc, char **argv) {
  std::string h("hello"), w("world");
  std::cout << compare(10, 20) << std::endl; // ok, infers int
  std::cout << compare(h, w) << std::endl;   // ok, infers string
  std::cout << compare("Hello", "World") << std::endl;  // hm…
  return EXIT_SUCCESS;
}

functiontemplate_infer.cc

Infers char* - does address integer comparison



Template Non-types
You can use non-types (constant values) in a template:

14

#include <iostream>
#include <string>

// return pointer to new N-element heap array filled with val
// (not entirely realistic, but shows what’s possible)
template <typename T, int N> 
T* valarray(const T& val) {
  T* a = new T[N];
  for (int i = 0; i < N; ++i)
    a[i] = val;
  return a;
}

int main(int argc, char **argv) {
  int* ip = valarray<int, 10>(17);
  string* sp = valarray<string, 17>("hello");
  ...
}

valtemplate.cc

Fixed type template parameter

Use comma separated list to specify 
template arguments



What’s Going On?
The compiler doesnʼt generate any code when it sees the template function

● It doesnʼt know what code to generate yet, since it doesnʼt know what types are 
involved

When the compiler sees the function being used, then it understands what types are 
involved

● It generates the instantiation of the template and compiles it (kind of like macro 
expansion)
○ The compiler generates template instantiations for each type used as a 

template parameter

15



Class Templates
Templates are useful for classes as well

● (In fact, that was one of the main motivations for templates!)

Imagine we want a class that holds a pair of things that we can:

● Set the value of the first thing
● Set the value of the second thing
● Get the value of the first thing
● Get the value of the second thing
● Swap the values of the things
● Print the pair of things

16



Pair Class Definition

17

#ifndef PAIR_H_
#define PAIR_H_

template <typename Thing> class Pair {
 public:
  Pair() { };

  Thing get_first() const { return first_; }
  Thing get_second() const { return second_; }
  void  set_first(Thing& copyme);
  void  set_second(Thing& copyme);
  void  Swap();

 private:
  Thing first_, second_;
};

#include "Pair.cc"
#endif  // PAIR_H_

Pair.h

Template parameters for class definition

Could be objects, could be 
primitives

Included here so that code using Pair can compile 
the instance;  or define all of Pair in header file.



Pair Function Definitions

18

template <typename Thing> 
void Pair<Thing>::set_first(Thing& copyme) {
  first_ = copyme;
}
template <typename Thing> 
void Pair<Thing>::set_second(Thing& copyme) {
  second_ = copyme;
}
template <typename Thing> 
void Pair<Thing>::Swap() {
  Thing tmp = first_;
  first_ = second_;
  second_ = tmp;
}
template <typename T>
std::ostream &operator<<(std::ostream& out, const Pair<T>& p) {
  return out << "Pair(" << p.get_first() << ", " 
             << p.get_second() << ")";
}

Pair.cc

Definition of member 
function of template class

Non member function to print out 
data in template class

member of template class



Using Pair

19

#include <iostream>
#include <string>

#include "Pair.h"

int main(int argc, char** argv) {
  Pair<std::string> ps;
  std::string x("foo"), y("bar");

  ps.set_first(x);  // (“foo”, “”)

  ps.set_second(y); // (“foo”, “bar”)

  ps.Swap(); // (“bar”, “foo”)

  std::cout << ps << std::endl;

  return EXIT_SUCCESS;
}

usepair.cc

Invokes default ctor, which default 
constructs members (“”, “”)



Demo: Pair Template



Questions?



STL



C++’s Standard Library
C++ʼs Standard Library consists of four major pieces:

1. The entire C standard library

2. C++ʼs input/output stream library

○ std::cin, std::cout, stringstream, fstream, etc.

3. C++ʼs standard template library (STL)  👈
○ Containers, iterators, algorithms (sort, find, etc.), numerics

4. C++ʼs miscellaneous library

○ Strings, exceptions, memory allocation, localization

23



STL Containers
A container is an object that stores (in memory) a collection of other objects 
(elements)
● Implemented as class templates, so hugely flexible

Several different classes of container
● Sequence containers (vector, deque, list, ...)
● Associative containers (set, map, multiset, multimap, bitset, ...)
● Differ in algorithmic cost and supported operations

24



STL Containers
STL containers store by value, not by reference

● When you insert an object, the container makes a copy

● If the container needs to rearrange objects, it makes copies

○ e.g. if you sort a vector, it will make many, many copies

○ e.g. if you insert into a map, that may trigger several copies

● What if you donʼt want this (disabled copy constructor or copying is expensive)?

○ You can insert a wrapper object with a pointer to the object

■ Weʼll learn about these “smart pointers” soon

25



Our Tracer Class
Wrapper class for an int value_

● Also holds unique int id_ (increasing from 0)
● Default ctor (set unique id_ for each instance), cctor, dtor, op=, op< defined
● friend function operator<< defined
● Private helper method PrintID() to return "(id_,value_)" as a string
● Class and member definitions can be found in Tracer.h and Tracer.cc

Useful for tracing behaviors of containers

● All methods print identifying messages
● Unique id_ allows you to follow individual instances

26

Two fields:
value
id (unique to the instance)



Demo: Tracer Walkthrough



STL vector
A generic, dynamically resizable array

● https://cplusplus.com/reference/vector/vector/ 
● Elements are stored in contiguous memory locations

○ Like a normal C array, or the ArrayList in Java!
○ Elements can be accessed using pointer arithmetic if youʼd like
○ Random access is O(1) time

■ Pointer arithmetic, then access
● Adding/removing from the end is cheap (amortized constant time)
● Inserting/deleting from the middle or start is expensive (linear time)

○ Need to shift all of the elements in the array

28

https://cplusplus.com/reference/vector/vector/


vector/Tracer Example

29

vectorfun.cc
#include <iostream>
#include <vector>
#include "Tracer.h"

using namespace std;

int main(int argc, char** argv) {
  Tracer a, b, c;
  vector<Tracer> vec;

  cout << "vec.push_back " << a << endl;
  vec.push_back(a);
  cout << "vec.push_back " << b << endl;
  vec.push_back(b);
  cout << "vec.push_back " << c << endl;
  vec.push_back(c);

  cout << "vec[0]" << endl << vec[0] << endl;
  cout << "vec[2]" << endl << vec[2] << endl;
  return EXIT_SUCCESS;
}

Most containers are declared in 
library of same name

Construct three tracer instances & 
empty vector

Add tracers to end of vector

Array syntax to access elements



Dynamic Resizing
Whatʼs going on here?

● Answer: a C++ vector (like Javaʼs ArrayList) is initially small, but grows if needed 
as elements are added

○ Implemented by allocating a new, larger underlying array, copy existing 
elements to new array, and then replace previous array with new one

● And vector starts out really small by default, so it needs to grow almost 
immediately!

○ But you can specify an initial capacity if “really small” is an inefficient initial 
size (use reserve() member function)

30



Demo: Vectors



STL iterator
Each container class has an associated iterator class (e.g. 
vector<int>::iterator) used to iterate through elements of the container

● https://cplusplus.com/reference/iterator/ 
● Iterator range is from begin up to end i.e., [begin , end)

○ end is one past the last container element!
● Some container iterators support more operations than others

○ All can be incremented (++), copied, copy-constructed
○ Some can be dereferenced on RHS (e.g. x = *it;)
○ Some can be dereferenced on LHS (e.g. *it = x;)
○ Some can be decremented (--)
○ Some support random access ([], +, -, +=, -=, <, > operators)

32

https://cplusplus.com/reference/iterator/


iterator Example

33

#include <vector>
#include "Tracer.h"
using namespace std;

int main(int argc, char** argv) {
  Tracer a, b, c;
  vector<Tracer> vec;

  vec.push_back(a);
  vec.push_back(b);
  vec.push_back(c);

  cout << "Iterating:" << endl;
  vector<Tracer>::iterator it;
  for (it = vec.begin(); it < vec.end(); it++) {
    cout << *it << endl;
  }
  cout << "Done iterating!" << endl;
  return EXIT_SUCCESS;
}

vectoriterator.cc

Dereference to access element

(first element, one past the end, 
increment to next element)



Type Inference (C++11)
The auto keyword can be used to infer 
types
● Simplifies your life if, for example, 

functions return complicated types
● The expression using auto must 

contain explicit initialization for it to 
work

// Calculate and return a vector
// containing all factors of n
std::vector<int> Factors(int n);

void foo(void) {
  // Manually identified type
  std::vector<int> facts1 = 
    Factors(324234);

  // Inferred type
  auto facts2 = Factors(12321);

  // Compiler error here
  auto facts3;
}

34

Compiler knows return value of Factors()

???? No information to infer type



auto and Iterators
Life becomes much simpler!

35

for (vector<Tracer>::iterator it = vec.begin(); it < vec.end(); it++) {
  cout << *it << endl;
}

for (auto it = vec.begin(); it < vec.end(); it++) {
  cout << *it << endl;
}



Range for Statement (C++11)
Syntactic sugar similar to Javaʼs foreach

○ General format:

● declaration defines loop variable
● expression is an object representing a sequence

○ Strings, initializer lists, arrays with an explicit length defined, STL containers 
that support iterators

36

// Prints out a string, one
// character per line
std::string str("hello");

for ( auto c : str ) {
  std::cout << c << std::endl;
}

for ( declaration : expression ) {
  statements
}

str = sequence of characters



Updated iterator Example

37

#include <vector>
#include "Tracer.h"

using namespace std;

int main(int argc, char** argv) {
  Tracer a, b, c;
  vector<Tracer> vec;

  vec.push_back(a);
  vec.push_back(b);
  vec.push_back(c);

  cout << "Iterating:" << endl;
  for (auto& p : vec) {   // p is a reference (alias) of vec
    cout << p << endl;    // element here; not a new copy
  }
  cout << "Done iterating!" << endl;
  return EXIT_SUCCESS;
}

vectoriterator_2011.cc

Look at how much more simplified this is!
No begin(), end(), or dereferencing! :O



STL Algorithms
A set of functions to be used on ranges of elements
● Range: any sequence that can be accessed through iterators or pointers, like 

arrays or some of the containers
● General form:

Algorithms operate directly on range elements rather than the containers they live in
● Make use of elementsʼ copy ctor, =, ==, !=, <
● Some do not modify elements

○ e.g. find, count, for_each, min_element, binary_search
● Some do modify elements

○ e.g. sort, transform, copy, swap

38

algorithm(begin, end, ...);



Algorithms Example

39

#include <vector>
#include <algorithm>
#include "Tracer.h"
using namespace std;

void PrintOut(const Tracer& p) {
  cout << " printout: " << p << endl;
}

int main(int argc, char** argv) {
  Tracer a, b, c;
  vector<Tracer> vec;

  vec.push_back(c);
  vec.push_back(a);
  vec.push_back(b);
  cout << "sort:" << endl;
  sort(vec.begin(), vec.end());
  cout << "done sort!" << endl;
  for_each(vec.begin(), vec.end(), PrintOut);
  return EXIT_SUCCESS;
}

vectoralgos.cc

Sort elements from 
[vec.begin(), vec.end())

Runs function on each 
element. In this case, prints 
out each element. 



STL list
A generic doubly-linked list

● https://cplusplus.com/reference/list/list/ 
● Elements are not stored in contiguous memory locations

○ Does not support random access (e.g. cannot do list[5])
● Some operations are much more efficient than vectors

○ Constant time insertion, deletion anywhere in list
○ Can iterate forward or backwards

■ Backward: --
■ Forward: ++

● Has a built-in sort member function
○ Doesnʼt copy!  Manipulates list structure instead of element values

40

https://cplusplus.com/reference/list/list/


list Example

41

#include <list>
#include <algorithm>
#include "Tracer.h"
using namespace std;

void PrintOut(const Tracer& p) {
  cout << " printout: " << p << endl;
}

int main(int argc, char** argv) {
  Tracer a, b, c;
  list<Tracer> lst;

  lst.push_back(c);
  lst.push_back(a);
  lst.push_back(b);
  cout << "sort:" << endl;
  lst.sort();
  cout << "done sort!" << endl;
  for_each(lst.begin(), lst.end(), PrintOut);
  return EXIT_SUCCESS;
}

listexample.cc

Use case is similar to vector, but internal 
implementation is different. 

Wonʼt copy elements, just modifies the 
next and prev pointers. 



STL map
One of C++ʼs associative containers: a key/value table, implemented as a search tree

● https://cplusplus.com/reference/map/ 
● General form:
● Keys must be unique

○ multimap allows duplicate keys
● Efficient lookup (O(log n)) and insertion (O(log n))

○ Access value via name[key]
■ If key doesnʼt exist in map, it is added to the map

● Elements are type pair<key_type, value_type> and are stored in sorted 
order (key is field first, value is field second)
○ Key type must support less-than operator (<)

42

map<key_type, value_type> name;

https://cplusplus.com/reference/map/


map Example

43

void PrintOut(const pair<Tracer,Tracer>& p) {
  cout << "printout: [" << p.first << "," << p.second << "]" << endl;
}

int main(int argc, char** argv) {
  Tracer a, b, c, d, e, f;
  map<Tracer,Tracer> table;
  map<Tracer,Tracer>::iterator it;

  table.insert(pair<Tracer,Tracer>(a, b));
  table[c] = d;
  table[e] = f;
  cout << "table[e]:" << table[e] << endl;
  it = table.find(c);

  cout << "PrintOut(*it), where it = table.find(c)" << endl;
  PrintOut(*it);

  cout << "iterating:" << endl;
  for_each(table.begin(), table.end(), PrintOut);
  return EXIT_SUCCESS;
}

mapexample.cc

Equivalent behavior

Returns iterator (end it not found). 
Can also use map.count() to see if 
a key exists. 



Unordered Containers (C++11)
unordered_map, unordered_set

● Average case for key access is O(1)

○ But range iterators can be less efficient than ordered map/set

○ Elements are not stored in contiguous order (stored based on the hash).

● See C++ Primer, online references for details

44



Demo: Animals



C++ standard lib is built around templates 
Containers store data using various underlying data structures 

● The specifics of the data structures define properties and operations for the 
container 

Iterators allow you to traverse container data 

● Iterators form the common interface to containers 

● Different flavors based on underlying data structure

Algorithms perform common, useful operations on containers 

● Use the common interface of iterators, but different algorithms require different 
ʻcomplexitiesʼ of iterators



Common C++ STL Containers (and Java equiv) 
Sequence containers can be accessed sequentially

● vector<Item> uses a dynamically-sized contiguous array (like ArrayList) 

● list<Item> uses a doubly-linked list (like LinkedList) 

Associative containers use search trees and are sorted by keys 

● set<Key> only stores keys (like TreeSet) 

● map<Key, Value> stores key-value pair<>ʼs (like TreeMap)

Unordered associative containers are hashed 

● unordered_map<Key, Value> (like HashMap)


