
What do you think? Name that Constructor!

What type of constructors do you
see below? How do you know?

CSE 374: Lecture 24
Inheritance

Subclasses
● Polymorphism. In essence, polymorphism is the ability access different objects through the same

interface. For instance, if you have an interface that represents an electronic device, that interface
would have the ability to turn the device on and off. You can use the actual physical types -
computer, phone, television, etc - as if they were an electronic device, because they all have the
on/off capability.

● Inheritance. This is one of the meatiest pieces of OO programming. Inheritance allows the sharing
of BEHAVIORS. For instance, a Square is a type of Rectangle, and has the same way to compute
its area (width times height) - therefore by make Square inherit from Rectangle, we can share that
behavior and avoid duplicating the code.

Subclassing supports fundamental Object Oriented precepts.
It may not always be what we want, but understanding OO

requires understanding subclassing.

Motivation
and C++ Syntax

Stock Portfolio Example
A portfolio represents a personʼs financial investments

● Each asset has a cost (i.e. how much was paid for it) and a market value (i.e. how
much it is worth)
○ The difference between the cost and market value is the profit (or loss)

● Different assets compute market value in different ways
○ A stock that you own has a ticker symbol (e.g. “GOOG”), a number of shares,

share price paid, and current share price
○ A dividend stock is a stock that also has dividend payments
○ Cash is an asset that never incurs a profit or loss

5

Design Without Inheritance
One class per asset type:

● Redundant!
● Cannot treat multiple investments together

○ e.g. canʼt have an array or vector of different assets

6

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

Cash

amount_

GetMarketValue()

DividendStock

symbol_
total_shares_
total_cost_

current_price_
dividends_

GetMarketValue()
GetProfit()
GetCost()

Inheritance
A parent-child “is-a” relationship between classes
● A child (derived class) extends a parent (base class)

Terminology:

● Java: Subclass inherits from super class. (Superclass is “higher” in the hierarchy)
● C++: Derived class inherits from base class. (Base class is “higher” in the

hierarchy)
○ Think of derived class as a derivative of the base class (e.g. car class is a

derivative of vehicle class)
○ Mean the same things. Youʼll hear both.

7

Java C++

Superclass Base Class

Subclass Derived Class

Inheritance
Benefits:
● Code reuse

○ Children can automatically inherit code from parents
● Polymorphism

○ Ability to redefine existing behavior but preserve the interface
○ Children can override the behavior of the parent
○ Others can make calls on objects without knowing which part of the

inheritance tree it is in
● Extensibility

○ Children can add behavior

8

Design With Inheritance

9

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

Cash

amount_

GetMarketValue()
DividendStock

symbol_
total_shares_
total_cost_

current_price_
dividends_

GetMarketValue()
GetProfit()
GetCost()

Asset

GetMarketValue()

Access Modifiers
● public: visible to all other classes
● protected: visible to current class and its derived classes
● private: visible only to the current class

Use protected for class members only when
● Class is designed to be extended by subclasses
● Derived classes must have access but clients should not be allowed

protected isn't truly protected as an adversary client can just extend a protected
class and get access to the "protected" information. Hence its use is rather limited in
the real world.

10

Class derivation List
Comma-separated list of classes to inherit from:

● Focus on single inheritance, but multiple inheritance possible
○ : public Base1, public Base2 {

Almost always you will want public inheritance
● Acts like extends does in Java
● Any member that is non-private in the base class is the same in the derived class;

both interface and implementation inheritance
○ Except that constructors, destructors, copy constructor, and assignment

operator are never inherited
11

#include "BaseClass.h"
class Name : public BaseClass {
 ...
};

Back to Stocks

BASE DERIVED

12

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

DividendStock

symbol_
total_shares_
total_cost_

current_price_
dividends_

GetMarketValue()
GetProfit()
GetCost()

Back to Stocks

A derived class:
● Inherits the behavior and state (specification) of the base class
● Overrides some of the base classʼ member functions (optional)
● Extends the base class with new member functions, variables (optional)

13

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

DividendStock

dividends_

GetMarketValue()
GetProfit()
GetCost()

PayDividend()

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

Constructing and Destructing
● Constructor of base class gets called before constructor of derived class

○ Default (zero-arg) constructor unless you specify a different one after the : in the
constructor

○ Initializer syntax: Foo::Foo(…): Bar(args); it(x) { … }
○ Needed to execute base class constructor with arguments; also works on instance

variables and is preferred in production code (slogan: “initialization preferred over
assignment”)

● Destructor of base class gets called after destructor of derived class
● So constructors/destructors really extend rather than override

○ Typically what you want
○ Java is the same

Mystery.cpp

Constructing and Destructing
● Constructor of base class gets called before constructor of derived class

○ Default (zero-arg) constructor unless you specify a different one after the : in the
constructor

○ Initializer syntax: Foo::Foo(…): Bar(args); it(x) { … }
○ Needed to execute baseclass constructor with arguments; also works on instance

variables and is preferred in production code (slogan: “initialization preferred over
assignment”)

● Destructor of base class gets called after destructor of derived class
● So constructors/destructors really extend rather than override

○ Typically what you want
○ Java is the same

Mystery.cpp

class Derived: public Base {
public:
 double m_cost;
 Derived(double cost=0.0, int id=0)
 : Base{ id }, // Call Base(int) constructor
 m_cost{ cost } // assign parameter values
 {
 }
 double getCost() const { return m_cost; }
};

Method Override
If a derived class defines a method with the same method name and
argument types as one defined in the base class, it overrides (i.e., replaces)
the base class method.

Remember constructors EXTEND, new methods OVERRIDE

If you want to use the base-class code, you specify the base class when
making a method call (base::method(…))

Like super in Java (no such keyword in C++ since there may be multiple
inheritance)

Questions?

Polymorphism
& Dynamic Dispatch

Polymorphism in C++
PromisedType* var_p = new ActualType();

● var_p is a pointer to an object of ActualType on the Heap
● ActualType must be the same or a derived class of PromisedType
● PromisedType defines the interface (i.e. what can be called on var_p), but

ActualType may determine which version gets invoked

Analogy: A box labeled “cell phone” could hold Android or iPhone

○ PromisedType is the box, ActualType is the Android or iPhone

19

Dynamic Dispatch (like Java)
Usually, when a derived function is available for an object, we want the derived
function to be invoked
● This requires a run time decision of what code to invoke
● This is the behavior in Java

A member function invoked on an object should be the most-derived function
accessible to the objectʼs visible type
● Can determine what to invoke from the object itself

Example: void PrintStock(Stock* s) { s->Print(); }
● Calls the appropriate Print() without knowing the exact class of *s, other

than it is some sort of Stock

20

Is this a Stock or a DividendStock ?

Requesting Dynamic Dispatch
Prefix the member function declaration with the virtual keyword
● Derived/child functions donʼt need to repeat virtual, but is traditionally good

style to do so
● This is how method calls work in Java (no virtual keyword needed)
● You almost always want functions to be virtual
● C++ doesn't do dynamic dispatch by default so virtual keyword is strictly required

if we want to make sure we're calling the most derived version of a function.

override keyword (C++11)
● Tells compiler this method should be overriding an inherited virtual function –

always use when you can
● Prevents overloading vs. overriding bugs

21

Static vs Dynamic Types
● Suppose we have a variable declared

T* x
and a method call
x->f(params)

● There are two types associated with x:
○ Static type: the declared type of x, which is T here

○ Dynamic type: the actual type of the object *x, which will either
be T or some subclass (subtype) of T
■ And this can change during execution if x is changed to point to different objects with different

(sub)types of T

22

Obtaining Dynamic Dispatch

● Static type (compile-type
type) must differ from the
dynamic type (actual
runtime type of the object)
○ Therefore, need to have some

form of indirection (eg, a
pointer or reference)

● The member function in
the static type must be
declared virtual

23

#include "Stock.h"
#include "DividendStock.h"

DividendStock dividend;
DividendStock* dp = ÷nd;
Stock stock;
Stock* sp = ÷nd;

dp->GetMarketValue();
sp->GetMarketValue();
stock.GetMarketValue();

Dynamic Dispatch Example
When a member function is invoked on an object:
● The most-derived function accessible to the objectʼs visible type is invoked

(decided at run time based on actual type of the object)

24

double DividendStock::GetMarketValue() const {
 return get_shares() * get_share_price() + dividends_;
}

double DividendStock:: GetProfit() const { // inherited
 return GetMarketValue() – GetCost();
}

double Stock::GetMarketValue() const {
 return get_shares() * get_share_price();
}

double Stock::GetProfit() const {
 return GetMarketValue() – GetCost();
}

DividendStock.cc

Stock.cc

Should call DividendStock::GetMarketValue()

Inherited
from
stock

Dynamic Dispatch Example

25

#include "Stock.h"
#include "DividendStock.h"

DividendStock dividend();
DividendStock* ds = ÷nd;
Stock* s = ÷nd; // why is this allowed?

// Invokes DividendStock::GetMarketValue()
ds->GetMarketValue();

// Invokes DividendStock::GetMarketValue()
s->GetMarketValue();

// invokes Stock::GetProfit(), since that method is inherited.
// Stock::GetProfit() invokes DividendStock::GetMarketValue(),
// since that is the most-derived accessible function.
s->GetProfit();

A DividendStock “is-a” Stock, and has
every part of Stockʼs interface

Most-Derived

26

class A {
 public:
 // Foo will use dynamic dispatch
 virtual void Foo();
};

class B : public A {
 public:
 // B::Foo overrides A::Foo
 virtual void Foo();
};

class C : public B {
 // C inherits B::Foo()
};

void Bar() {
 A* a_ptr;
 C c;

 a_ptr = &c;

 // Whose Foo() is called?
 a_ptr->Foo();
}

A

B

C

Has Foo definition

Most-Derived

27

class A {
 public:
 // Foo will use dynamic dispatch
 virtual void Foo();
};

class B : public A {
 public:
 // B::Foo overrides A::Foo
 virtual void Foo();
};

class C : public B {
 // C inherits B::Foo()
};

void Bar() {
 A* a_ptr;
 C c;

 a_ptr = &c;

 // B::Foo() is called
 a_ptr->Foo();
}

A

B

C

Has Foo definition

Questions?

How Can This Possibly Work?
The compiler produces Stock.o from just Stock.cc
● It doesnʼt know that DividendStock exists during this process
● So then how does the emitted code know to call

Stock::GetMarketValue() or DividendStock::GetMarketValue()
or something else that might not exist yet?
● Function pointers!

29

double Stock::GetMarketValue() const {
 return get_shares() * get_share_price();
}

double Stock::GetProfit() const {
 return GetMarketValue() – GetCost();
} Stock.cc

virtual double Stock::GetMarketValue() const;
virtual double Stock::GetProfit() const;

Stock.h

How Can This Possibly Work?

● The compiler produces Stock.o from just Stock.cc
○ It doesnʼt know that DividendStock exists during this process

○ So then how does the emitted code know to call
Stock::GetMarketValue()
vs. DividendStock::GetMarketValue()

vs. something else that might not exist yet?
30DividendStock.cc cpp DividendStock.i cc1 DividendStock.o

ld myprog

Stock.c cpp Stock.i cc1 Stock.o

How Can This Possibly Work?

● The compiler produces Stock.o from just Stock.cc
○ It doesnʼt know that DividendStock exists during this process

○ So then how does the emitted code know to call
Stock::GetMarketValue()
vs. DividendStock::GetMarketValue()

vs. something else that might not exist yet?

○ Function pointers! 31

Virtual Table
Virtual tables & virtual table

pointers

vtables and the vptr
If a class contains any virtual methods, the compiler emits:
● A (single) virtual function table (vtable) for the class

○ Contains a function pointer for each virtual method in the class
○ The pointers in the vtable point to the most-derived function for that class

● A virtual table pointer (vptr) for each object instance
○ A pointer to a virtual table as a “hidden” member variable
○ When the objectʼs constructor is invoked, the vptr is initialized to point to the

vtable for the newly constructed objectʼs class
○ Thus, the vptr “remembers” what class the object is

33

vptr and vtable Visualization

34

Stock::GetMarketValue()

Stock::GetCost()

Stock::GetProfit()

Cash::GetMarketValue()

Cash::GetCost()

Cash::GetProfit()

DividendStock::GetMarketValue()

vptr vtable

vtable/vptr Example

35

class Base {
 public:
 virtual void f1();
 virtual void f2();
};

class Der1 : public Base {
 public:
 virtual void f1();
};

class Der2 : public Base {
 public:
 virtual void f2();
};

Base b;
Der1 d1;
Der2 d2;

Base* b0ptr = &b;
Base* b1ptr = &d1;
Base* b2ptr = &d2;

b0ptr->f1(); // Base::f1()
b0ptr->f2(); // Base::f2()

b1ptr->f1(); // Der1::f1()
b1ptr->f2(); // Base::f2()

d2.f1(); // Base::f1()
b2ptr->f1(); // Base::f1()
b2ptr->f2(); // Der2::f2()

vtable/vptr Example

36

class Base {
 public:
 virtual void f1();
 virtual void f2();
};

class Der1 : public Base {
 public:
 virtual void f1();
};

class Der2 : public Base {
 public:
 virtual void f2();
};

Base b;
Der1 d1;
Der2 d2;

Base* b0ptr = &b;
Base* b1ptr = &d1;
Base* b2ptr = &d2;

b0ptr->f1(); // Base::f1()
b0ptr->f2(); // Base::f2()

b1ptr->f1(); // Der1::f1()
b1ptr->f2(); // Base::f2()

d2.f1(); // Base::f1()
b2ptr->f1(); // Base::f1()
b2ptr->f2(); // Der2::f2()

Base::f1()
Base::f2()

Der1::f1()
Base::f2()

Base::f1()
Base::f1()
Der2::f2()

Static Dispatch

What happens if we omit “virtual”?
By default, without virtual, methods are dispatched statically
● At compile time, the compiler writes in a call to the address of the classʼ

method based on the compile-time visible type of the callee
● This is different than Java

38

class Derived : public Base { ... };
int main(int argc, char** argv) {
 Derived d;
 Derived* dp = &d;
 Base* bp = &d;
 dp->foo();
 bp->foo();
 return 0;
}

Derived::foo()
...

Base::foo()
...

Static Dispatch Example
Removed virtual on methods:

39

DividendStock dividend();
DividendStock* ds = ÷nd;
Stock* s = ÷nd;

ds->GetMarketValue(); // Calls DividendStock::GetMarketValue()
s->GetMarketValue(); // Calls Stock::GetMarketValue()

s->GetProfit(); // Calls Stock::GetProfit(). Stock::GetProfit()
calls Stock::GetMarketValue().

ds->GetProfit(); // Calls Stock::GetProfit(), since that method is
inherited. Stock::GetProfit() calls Stock::GetMarketValue().

double Stock::GetMarketValue() const;
double Stock::GetProfit() const;

Stock.h

virtual is “sticky”
If X::f() is declared virtual, then a vtable will be created for class X and for all of
its subclasses
● The vtables will include function pointers for (the correct) f

f() will be called using dynamic dispatch even if overridden in a derived class
without the virtual keyword
● Good style to help the reader and avoid bugs by using override

○ Style guide controversy, if you use override should you use virtual in
derived classes? Recent style guides say just use override, but youʼll
sometimes see both, particularly in older code

40

Why Not Always Use virtual?
Two (fairly uncommon) reasons:
● Efficiency:

○ Non-virtual function calls are a tiny bit faster (no indirect lookup)
○ A class with zero virtual functions has objects without a vptr field

● Control:
○ If f() calls g() in class X and g is not virtual, weʼre guaranteed to call

X::g() and not g() in some subclass
○ Particularly useful for framework design

In Java, all methods are virtual, except static class methods, which arenʼt
associated with objects

In C++, you can pick what you want
● Omitting virtual can cause obscure bugs
● (Most of the time, you want member function to be virtual)

41

Abstract Classes
Sometimes we want to include a function in a class but only implement it in derived
classes

● In Java, we would use an abstract method
● In C++, we use a “pure virtual” function

○ Example: virtual string noise() = 0;

A class containing any pure virtual methods is abstract

● You canʼt create instances of an abstract class

● Extend abstract classes and override methods to use them

A class containing only pure virtual methods is the same as a Java interface

● Pure type specification without implementations (e.g. asset)

virtual string noise() = 0;

42

Pure virtual methods and interfaces (?)
● A C++ “pure virtual” method is like a Java “abstract” method.

○ Subclass must override because there is no definition in base class

● Makes sense with dynamic dispatch
● Funny syntax in base class; override as usual:

class C {
virtual t0 m(t1,t2,...,tn) = 0;
...

};

● Side-comment: with multiple inheritance and pure-virtual methods, no need for a
separate notion of Java-style interfaces

Questions?

(Up) casting
● An object of a derived class cannot be cast to an object of a base class.

○ For the same reason a struct T1 {int x,y,z;} cannot be cast to type
struct T2 {int x,y;} (different size)

● A pointer to an object of a derived class can be cast to a pointer to an
object of a base class.
○ For the same reason a struct T1* can be cast to type struct T2* (pointers

to a location in memory)
○ (Story not so simple with multiple inheritance)

● After such an upcast, field-access works fine (prefix)
○ but what do method calls mean in the presence of overriding? (see virtual)

(Down) casting
● C pointer-casts: unchecked; be careful
● Java: checked; may raise ClassCastException
● New: C++ has “all the above” (several different kinds of casts)

○ If you use single-inheritance and know what you are doing, the C-style
casts (same pointer, assume more about what is pointed to) should
work fine for downcasts

○ Worth learning about the differences on your own

