
What do you think? How many bugs can you find?
int* AllocateInt(int &x) {
 int* heapy_int = new int;
 *heapy_int = x;
 return heapy_int;
}
Point* AllocatePoint(int x, int y) {
 Point* heapy_point = malloc Point(x, y);
 return heapy_point;
}
int main(int argc, char** argv) {
 Point* x = AllocatePoint(1, 2);
 int* y = AllocateInt(3);
 cout << "x's x_ coordinate: " << x->get_x() <<
endl;
 cout << "distance between x and self: " <<
x->Distance(*x) << endl;
 cout << "y: " << y << ", *y: " << *y << endl;
 free x;
 delete y;
 return EXIT_SUCCESS;
}

CSE 374: Lecture 25
Inheritance

Constructors
ctor

Constructors
A constructor (ctor) initializes a newly-instantiated object

● A class can have multiple constructors that differ in parameters

○ Which one is invoked depends on how the object is instantiated

Written with the class name as the method name:

● C++ will automatically create a synthesized default constructor if you have no
user-defined constructors

○ Takes no arguments, can be explicitly specified: Point() = default;

Point(const int x, const int y);

Synthesized Default Constructor
class SimplePoint {
 public:
 // no constructors declared!
 int get_x() const { return x_; } // inline member function
 int get_y() const { return y_; } // inline member function
 double Distance(const SimplePoint& p) const;
 void SetLocation(int x, int y);

 private:
 int x_; // data member
 int y_; // data member
}; // class SimplePoint

SimplePoint.h

#include "SimplePoint.h"
... // definitions for Distance() and SetLocation()

int main(int argc, char** argv) {
 SimplePoint x; // invokes synthesized default constructor
 return EXIT_SUCCESS;
}

SimplePoint.cc

5

Synthesized Default Constructor
If you define any constructors, C++ assumes you have defined all the ones you intend
to be available and will not add any others

#include "SimplePoint.h"

// defining a constructor with two arguments
SimplePoint::SimplePoint(const int x, const int y) {
 x_ = x;
 y_ = y;
}

void foo() {
 SimplePoint x; // compiler error: if you define any ctors, C++

// will NOT synthesize a default constructor for
 // you.

 SimplePoint y(1, 2); // works:invokes the 2-int-arguments constructor
} 6

Multiple Constructors (overloading)
#include "SimplePoint.h"

// default constructor
SimplePoint::SimplePoint() {
 x_ = 0;
 y_ = 0;
}

// constructor with two arguments
SimplePoint::SimplePoint(const int x, const int y) {
 x_ = x;
 y_ = y;
}

void foo() {
 SimplePoint x; // invokes the default constructor
 SimplePoint y(1, 2); // invokes the 2-int-arguments ctor
 SimplePoint a[3]; // invokes the default ctor 3 times
} 7

Initialization Lists
C++ lets you optionally declare an initialization list as part of a constructor definition

● Initializes fields according to parameters in the list
● The following two are (nearly) identical:

// constructor with an initialization list
Point::Point(const int x, const int y) : x_(x), y_(y) {
 std::cout << "Point constructed: (" << x_ << ",";
 std::cout << y_<< ")" << std::endl;
}

Point::Point(const int x, const int y) {
 x_ = x;
 y_ = y;
 std::cout << "Point constructed: (" << x_ << ",";
 std::cout << y_<< ")" << std::endl;
}

Body can
be
empty

Initialization vs. Construction

● Data members in initializer list are initialized in the order they are defined in the
class, not by the initialization list ordering (!)
○ Data members that donʼt appear in the initialization list are default

initialized/constructed before body is executed
● Initialization preferred to assignment to avoid extra steps

○ Real code should never mix the two styles

class Point3D {
 public:
 // constructor with 3 int arguments
 Point3D(const int x, const int y, const int z) : y_(y), x_(x) {
 z_ = z;
 }

 private:
 int x_, y_, z_; // data members
}; // class Point3D

First, initialization list is applied.

Next, constructor body is executed.

9

Copy
Constructors

cctor

Copy Constructors
C++ has the notion of a copy constructor (cctor)
● Used to create a new object as a copy of an existing object

Point::Point(const int x, const int y) : x_(x), y_(y) { }

// copy constructor
Point::Point(const Point& copyme) {
 x_ = copyme.x_;
 y_ = copyme.y_;
}

void foo() {
 Point x(1, 2); // invokes the 2-int-arguments constructor
 Point y(x); // invokes the copy constructor
 Point z = y; // also invokes the copy constructor
}

● Initializer lists can also be used in copy constructors (preferred) 11

Use a cctor since we are constructing based on x
Point z didnʼt exist before, a ctor must be called

Copy Constructors (w/ initialization list)

Point::Point(const int x, const int y) : x_(x), y_(y) { }

// copy constructor w/ initialization list
Point::Point(const Point& copyme): x_(copyme.x_), y_(copyme.y_) { }

void foo() {
 Point x(1, 2); // invokes the 2-int-arguments constructor
 Point y(x); // invokes the copy constructor
 Point z = y; // also invokes the copy constructor
}

12

Synthesized Copy Constructor
If you donʼt define your own copy constructor, C++ will synthesize one for you
● It will do a shallow copy of all of the fields (i.e. member variables) of your class

○ Does assignment for primitives; could be problematic with pointers
● Sometimes the right thing; sometimes the wrong thing

#include "SimplePoint.h"

... // definitions for Distance() and SetLocation()

int main(int argc, char** argv) {
 SimplePoint x;
 SimplePoint y(x); // invokes synthesized copy constructor
 ...
 return EXIT_SUCCESS;
}

13

// In this example, synthesized cctor is fine

When Do Copies Happen?
The copy constructor is invoked if:

● You initialize an object from another
object of the same type:

● You pass a non-reference object as a
value parameter to a function:

● You return a non-reference object
value from a function:

void foo(Point x) { ... }

Point y; // default ctor
foo(y); // copy ctor

Point x; // default ctor
Point y(x); // copy ctor
Point z = y; // copy ctor

Point foo() {
 Point y; // default ctor
 return y; // copy ctor
}

14

Assignment
Opt=

Assignment != Construction
“=” is the assignment operator

● Assigns values to an existing, already constructed object

Point w; // default ctor
Point x(1, 2); // two-ints-argument ctor
Point y(x); // copy ctor
Point z = w; // copy ctor
y = x; // assignment operator

16

Overloading the “=” Operator
You can choose to define the “=” operator

● But there are some rules you should follow:

Point& Point::operator=(const Point& rhs) {
 if (this != &rhs) { // (1) always check against this
 x_ = rhs.x_;
 y_ = rhs.y_;
 }
 return *this; // (2) always return *this from op=
}

Point a; // default constructor
a = b = c; // works because = return *this
a = (b = c); // equiv. to above (= is right-associative)
(a = b) = c; // "works" because = returns a non-const

// reference to *this 17

More important when data members are dynamic memory

Should be a reference to *this to allow chaining

Bad style,
just for
demo

Synthesized Assignment Operator
If you donʼt define the assignment operator, C++ will synthesize one for you

● It will do a shallow copy of all of the fields (i.e. member variables) of your class

● Sometimes the right thing; sometimes the wrong thing

○ Usually wrong whenever a class has dynamically allocated data

18

#include "SimplePoint.h"

... // definitions for Distance() and SetLocation()

int main(int argc, char** argv) {
 SimplePoint x;
 SimplePoint y(x);
 y = x; // invokes synthesized assignment operator
 return EXIT_SUCCESS;
}

Class Constructors (4 types)

● A default constructor takes zero arguments. If you don't define any constructors for
your class, the compiler will generate one of these constructors for you.

● A copy constructor takes a single parameter which is a const reference (const T&)
to another object of the same type, and initializes the fields of the new object with
a COPY of the fields in the referenced object.

● User-defined constructors initialize fields and take whatever arguments you like.
● Conversion constructors are constructors that take a single argument. For our

string example this is like:
String(const char* raw);
String s = "foo";

Implicit constructors & destructors
Conversion constructors are implicit:
automatically applied when a
constructor is called with one
argument.

If you want a single argument
constructor that is not implicit, must
use
explicit String(const
char* raw);

Destructors are used by
ʻdeleteʼ to clean up when
freeing memory.

Virtual ~String();

You do not call destructors
explicitly

Destructors

Destructors
C++ has the notion of a destructor (dtor)

● Invoked automatically when a class instance is deleted (even via exceptions or
other causes!)

● Place to put your cleanup code – free any dynamic storage or other resources
owned by the object

● Standard C++ idiom for managing dynamic resources

■ Slogan: “Resource Acquisition Is Initialization” (RAII)

Point::~Point() { // destructor
 // do any cleanup needed when a Point object goes away
 // (nothing to do here since we have no dynamic resources)
}

22

Rule of Three
If you define any of:

● Destructor
● Copy Constructor
● Assignment (operator=)

Then you should normally define all three

● Can explicitly ask for default synthesized versions (C++11):

class Point {
 public:
 Point() = default; // the default ctor
 ~Point() = default; // the default dtor
 Point(const Point& copyme) = default; // the default cctor
 Point& operator=(const Point& rhs) = default; // the default "="
 ... 23

Other ways to control functionality
● C++ style guide tip:

○ If possible, disable the copy constructor and assignment operator if not needed – avoids
implicit invocation and excessive copying. C++11 and later have direct syntax to indicate
this:

24

class Point {
 public:
 Point(const int x, const int y) : x_(x), y_(y) { } // ctor
 ...
 Point(const Point& copyme) = delete; // declare cctor and "=" to
 Point& operator=(const Point& rhs) = delete; // be deleted (C++11)
 private:
 ...
}; // class Point

Point w; // compiler error (no default constructor)
Point x(1, 2); // OK!
Point y = w; // compiler error (no copy constructor)
y = x; // compiler error (no assignment operator)

Non-member Functions
“Non-member functions” are just normal functions that happen to use some class

● Called like a regular function instead of as a member of a class object instance

These do not have access to the classʼ private members

● Can access fields via getters (if they are there)

Useful non-member functions often included as part of interface of a class

● Declaration goes in header file, but outside of class definition
● Operators that are commutative should typically be non-members

(non-commutative things can be non members too)

25

Member function

double Point::distance(Point&)
pt1.distance(pt2);

float Vector::operator*(Vector&)
vec1 * vec2;

Non-member function

double distance(Point&, Point&)
distance(pt1, pt2);

float operator*(Vector&, Vector&)
vec1 * vec2;

Example

Access Control
Access modifiers for members:
● public: accessible to all parts of the program
● private: accessible to the member functions of the class
● protected: accessible to member functions of the class and any derived

classes (subclasses – more to come, later)

Reminders:
● Access modifiers apply to all members that follow until another access modifier is

reached
● If no access modifier is specified, struct members default to public and

class members default to private

27

Operator Overloading
Can overload operators using member functions
● Restriction: left-hand side argument must be a class you are implementing

Can overload operators using non-member functions
● No restriction on arguments (can specify any two)

○ Our only option when the left-hand side is a class you do not have control
over, like ostream or istream.

● But no access to private data members

28

Complex operator+(const Complex& a, const Complex& b) { ... }

Complex& operator+=(const Complex& a) { ... }

friend non-member Functions
A class can give a non-member function (or class) access to its non-public members
by declaring it as a friend within its definition

● Not a class member, but has access privileges as if it were
○ friend functions are usually unnecessary if your class includes

appropriate “getter” public functions

29

class Complex {
 ...
 friend std::istream& operator>>(std::istream& in, Complex& a);
 ...
}; // class Complex

std::istream& operator>>(std::istream& in, Complex& a) {
 ...
}

Complex.h

Complex.cc
Note: no Complex::

When to use non-member and friend
Member Functions
● Operators that modify the object being called on

○ Assignment operator (operator=)
● “Core” non-operator functionality that is part of the class interface

Nonmember Functions
● Used for commutative operators

○ e.g., so v1 + v2 is invoked as operator+(v1, v2)instead of
v1.operator+(v2)

● If operating on two types and the class is on the right-hand side
○ e.g., cin >> complex;

● Returning a “new” object, not modifying an existing one
● Only grant friend permission if you NEED to, and if you are not modifying

30

Namespaces
Each namespace is a separate scope

● Useful for avoiding symbol collisions!

Namespace definition:

namespace name {
 // declarations go here
}

● Doesnʼt end with a semicolon and doesnʼt add to the indentation of its contents
● Creates a new namespace name if it did not exist, otherwise adds to the existing

namespace (!)
○ This means that components (e.g. classes, functions) of a namespace can be

defined in multiple source files
31

namespace name {
// declarations go here
} // namespace name

LL:Iterator
HT:Iterator
Same name, but different namespace

Classes vs. Namespaces
They seems somewhat similar, but classes are not namespaces:

● There are no instances/objects of a namespace; a namespace is just a group of
logically-related things (classes, functions, etc.)

● To access a member of a namespace, you must use the fully qualified name (i.e.
namespace_name::member)

○ Unless you are using that namespace

○ You only used the fully qualified name of a class member when you are defining
it outside of the scope of the class definition

32

