
What do you think? Discuss!

Write a list of things you know
about C++

- What is like C?
- What is new?

CSE 374: Lecture 24
C++ Classes

So far …
● Object Oriented
● Larger Language
● Std Library
● Operators
● Namespaces

TODAY
ʻNewʼ & ʻDeleteʼ

Const

Classes

Constructing: stack v. heap

New / delete
In C:
 int* x = (int*) malloc(sizeof(int));

int* arr = (int*) malloc(sizeof(int) * 100);
free(x);

 free(arr);

In C++, we have a nicer syntax for this that does the same thing:
int* x = new int(4); // x stores the value 4.
int* arr = new int[100];
delete x;

 delete [] arr;

New / delete
In C:
 int* x = (int*) malloc(sizeof(int));

int* arr = (int*) malloc(sizeof(int) * 100);
free(x);

 free(arr);

In C++, we have a nicer syntax for this that does the same thing:
int* x = new int(4); // x stores the value 4.
int* arr = new int[100];
delete x;

 delete [] arr;

ʻ new ʻ is an operator, not a function. The operator
allocates memory, and then calls a constructor if
appropriate.
● Can even initialize primitive data types
● Throws an exception if it fails (not does return NULL)
● Returns memory of the desired type, not an untyped

pointer
● Required size calculated by compiler, not by user
● ʻ malloc ʻ does not call a constructor

C++11 nullptr
C and C++ have long used NULL as a pointer value that references nothing

C++11 introduced a new literal for this: nullptr

● New reserved word
● Interchangeable with NULL for all practical purposes, but it has type T* for

any/every T, and is not an integer value
○ Still can convert to/from integer 0 for tests, assignment, etc.

● Advice: prefer nullptr in C++11 code
○ Though NULL will also be around for a long, long time

7

new/delete
To allocate on the heap using C++, you use the new keyword instead of malloc()
from stdlib.h

● You can use new to allocate an object (e.g. new Point)
● You can use new to allocate a primitive type (e.g. new int)

To deallocate a heap-allocated object or primitive, use the delete keyword instead
of free() from stdlib.h

● Donʼt mix and match!
○ Never free() something allocated with new
○ Never delete something allocated with malloc()
○ Careful if youʼre using a legacy C code library or module in C++

8

new/delete Behavior
new behavior:

● When allocating you can specify a constructor or initial value
○ (e.g. new Point(1, 2)) or (e.g. new int(333))

● If no initialization specified, it will use default constructor for objects, garbage for
primitives (integer, float, character, boolean, double)
○ You donʼt need to check that new returns nullptr
○ When an error is encountered, an exception is thrown (that we wonʼt worry

about)

delete behavior:

● If you delete already deleted memory, then you will get undefined behavior.
(Same as when you double free in c)

9

new/delete Example

10

#include "Point.h"
using namespace std;

... // definitions of AllocateInt() and AllocatePoint()

int main() {
 Point* x = AllocatePoint(1, 2);
 int* y = AllocateInt(3);

 cout << "x's x_ coord: " << x->get_x() << endl;
 cout << "y: " << y << ", *y: " << *y << endl;

 delete x;
 delete y;
 return EXIT_SUCCESS;
}

int* AllocateInt(int x) {
 int* heapy_int = new int;
 *heapy_int = x;
 return heapy_int;
}

Point* AllocatePoint(int x, int y) {
 Point* heapy_pt = new Point(x,y);
 return heapy_pt;
}

heappoint.cc

Dynamically Allocated Arrays
To dynamically allocate an array:

● Default initialize:

To dynamically deallocate an array:

● Use delete[] name;
● It is an incorrect to use “delete name;” on an array

○ The compiler probably wonʼt catch this, though (!) because it canʼt always
tell if name* was allocated with new type[size]; or new type;
■ Especially inside a function where a pointer parameter could point to a

single item or an array and thereʼs no way to tell which!
○ Result of wrong delete is undefined behavior

11

type* name = new type[size];

delete[] name;

12

#include "Point.h"

int main() {
 int stack_int; // stack (garbage)
 int* heap_int = new int; // heap (garbage)
 int* heap_int_init = new int(12); // heap (12)

 int stack_arr[3]; // stack (garbage)
 int* heap_arr = new int[3]; // heap(garbage)

 int* heap_arr_init_val = new int[3](); // heap(0, 0, 0)
 int* heap_arr_init_lst = new int[3]{4, 5}; // C++11 syntax, heap(4, 5, 0)

 ...

 delete heap_int; // ok
 delete heap_int_init; // ok
 delete heap_arr; // BAD
 delete[] heap_arr_init_val; // ok

 return EXIT_SUCCESS;
}

arrays.cc

Arrays Example (primitive)

malloc vs. new
malloc() new

What is it? a function an operator / keyword

How often used (in C)? often never

How often used (in C++)? rarely often

Allocated memory for anything
arrays, structs, objects,

primitives

Returns
a void*

(should be cast)
appropriate pointer type

(doesn’t need a cast)

When out of memory returns NULL throws an exception

Deallocating free() delete or delete[]

13

const in C++

const
const: this cannot be changed/mutated
● Used much more in C++ than in C
● Signal of intent to compiler (compile-time errors); meaningless at hardware level

15

void BrokenPrintSquare(const int& i) {
 i = i*i; // compiler error here!
 std::cout << i << std::endl;
}

int main(int argc, char** argv) {
 int j = 2;
 BrokenPrintSquare(j);
 return EXIT_SUCCESS;
}

brokenpassbyrefconst.cc

const can be a useful
tool for defensive
programming

const and Pointers
Pointers can change data in two different contexts:

1. You can change the value of the pointer

2. You can change the thing the pointer points to (via dereference)

const can be used to prevent either/both of these behaviors!

● const next to pointer name means you canʼt change the value of the pointer

○ int* const ptr; // cannot change the value of ptr

● const next to data type pointed to means you canʼt use this pointer to change the
thing being pointed to

○ const int* ptr // cannot change the value of *ptr

● Tip: read variable declaration from right-to-left 16

Example
The syntax with pointers is confusing:

17

int main(int argc, char** argv) {
 int x = 5; // int
 const int y = 6; // (const int)
 y++;

 const int* z = &y; // pointer to a (const int)
 *z += 1;
 z++;

 int* const w = &x; // (const pointer) to a (variable int)
 *w += 1;
 w++;

 const int* const v = &x; // (const pointer) to a (const int)
 *v += 1;
 v++;

 return EXIT_SUCCESS;
}

constmadness.cc

Example
The syntax with pointers is confusing:

18

int main(int argc, char** argv) {
 int x = 5; // int
 const int y = 6; // (const int)
 y++; // compiler error

 const int* z = &y; // pointer to a (const int)
 *z += 1; // compiler error
 z++; // ok

 int* const w = &x; // (const pointer) to a (variable int)
 *w += 1; // ok
 w++; // compiler error

 const int* const v = &x; // (const pointer) to a (const int)
 *v += 1; // compiler error
 v++; // compiler error

 return EXIT_SUCCESS;
}

constmadness.cc

const Parameters
A const parameter cannot be mutated
inside the function

● Therefore it does not matter if the
argument can be mutated or not

A non-const parameter may be mutated
inside the function

● It would be BAD if you passed it a
const variable

● Compiler wonʼt let you pass in const
parameters

void foo(const int* y) {
 std::cout << *y << std::endl;
}

void bar(int* y) {
 std::cout << *y << std::endl;
}

int main(int argc, char** argv) {
 const int a = 10;
 int b = 20;

 foo(&a); // OK
 foo(&b); // OK
 bar(&a); // not OK – error
 bar(&b); // OK

 return EXIT_SUCCESS;
}

When to Use References?
Google C++ style guide suggests (not mandated by the C++ language):
● Input parameters:

○ Either use values (for primitive types like int or small structs/objects)
○ Or use const references (for complex struct/object instances)

● Output parameters:
○ Use const pointers: unchangeable pointers referencing changeable data

● Ordering:
○ List input parameters first, then output parameters last

20

void CalcArea(const int& width, const int& height,
 int* const area) {
 *area = width * height;
}

styleguide.cc

Questions?

C++ Classes

C Structs: Not object-oriented
typedef struct person {
 char* name;
 int age;
} person;

person* makePerson (char *name, int a) {
 person* p = (person*) malloc (sizeof (person));
 p->name = (char*) malloc (MAX_NAME+1);
 strncpy (p->name, name, MAX_NAME);
 p->age = a;
 return p;
}

person *p2;
char name[MAX_NAME];
int age;
// fill name, age
p2 = makePerson (name, age);

Notes:
 Not self contained
 need to allocate heap memory so object will persist
 need to allocate memory for the string
 Unless you statically declare (char name[MAX_NAME])

C++ classes: object-oriented
class String {

public:
 String();
 String(const String& other);
 String(const char* raw);
 virtual ~String();
 String& operator=(const String& other);
 size_t length() const;
 void append(const String& other);
 void clear();

friend std::ostream&
operator<<(std::ostream& out, const String& s);

 private:
 void makeNewRaw(size_t length);
 char* raw_;
};

Classes - can define fields and methods

Class layout

Classes
● Like Java

○ Fields vs. methods, static vs. instance, constructors
○ Method overloading (functions, operators, and constructors too)

● Not quite like Java
○ access-modifier (e.g., private) syntax and default
○ declaration separate from implementation (like C)
○ funny constructor syntax, default parameters (e.g., ... = 0)

● Nothing like Java
○ Objects vs. pointers to objects
○ Destructors and copy-constructors
○ virtual vs. non-virtual (to be discussed)

Classes
Class definition syntax (in a .h file):

● Members can be functions (methods) or data (variables)
Class member function definition syntax (in a .cc file):

● (1) define within the class definition or (2) declare within the class definition and
then define elsewhere

class Name {
 public:
 // public member definitions & declarations go here

 private:
 // private member definitions & declarations go here
}; // class Name

retType Name::MethodName(type1 param1, …, typeN paramN) {
 // body statements
}

27

Class Organization
Itʼs a little more complex than in C when modularizing with struct definition:

● Class definition is part of interface and should go in .h file

○ Private members still must be included in definition (!)

● Usually put member function definitions into companion .cc file with
implementation details

○ Common exception: setter and getter methods

● These files can also include non-member functions that use the class

Unlike Java, you can name files anything you want

● Typically Name.cc and Name.h for class Name

28

Why?

Class Definition (.h file)
#ifndef POINT_H_
#define POINT_H_

class Point {
 public:
 Point(const int x, const int y); // constructor
 int get_x() const { return x_; } // inline member function
 int get_y() const { return y_; } // inline member function
 double Distance(const Point& p) const; // member function
 void SetLocation(const int x, const int y); // member function

 private:
 int x_; // data member
 int y_; // data member
}; // class Point

#endif // POINT_H_

Point.h

29

Inline definition ok for
simple getters/setters

const means the “this”
object we are calling on,
canʼt be changed

Google C++ naming conventions for data
members

Class Member Definitions (.cc file)
#include <cmath>
#include "Point.h"

Point::Point(const int x, const int y) {
 x_ = x;
 this->y_ = y; // "this->" is optional unless name conflicts
}

double Point::Distance(const Point& p) const {
 // We can access p’s x_ and y_ variables either through the get_x(),
 // get_y() accessor functions or the x_, y_ private member variables
 // directly, since we’re in a member function of the same class.
 double distance = (x_ - p.get_x()) * (x_ - p.get_x());
 distance += (y_ - p.y_) * (y_ - p.y_);
 return sqrt(distance);
}

void Point::SetLocation(const int x, const int y) {
 x_ = x;
 y_ = y;
}

Point.cc

30

This code uses bad style for
demonstration purposes

Canʼt modify the “this” object
inside the function

const wonʼt affect caller, but good style

Canʼt be const. We have to mutate the Point.

Class Usage (.cc file)
#include <iostream>
#include "Point.h"

using namespace std;

int main(int argc, char** argv) {
 Point p1(1, 2); // allocate a new Point on the Stack
 Point p2(4, 6); // allocate a new Point on the Stack

 cout << "p1 is: (" << p1.get_x() << ", ";
 cout << p1.get_y() << ")" << endl;

 cout << "p2 is: (" << p2.get_x() << ", ";
 cout << p2.get_y() << ")" << endl;

 cout << "dist : " << p1.Distance(p2) << endl;
 return 0;
}

usepoint.cc

31

Calls constructor to define an
object on the stack (no “new”
keyword). More on this shortly.

Dot notation to call
function (like Java)

struct vs. class
In C, a struct can only contain data fields
● Has no methods and all fields are always accessible

In C++, struct and class are (nearly) the same!
● Both define a new type (the struct or class name)
● Both can have methods and member visibility (public/private/protected)
● Only real (minor) difference: members are default public in a struct and default

private in a class

Common style/usage convention:
● Use struct for simple bundles of data
● Use class for abstractions with data + functions

32

Questions?

Constructors
ctor

Constructors
A constructor (ctor) initializes a newly-instantiated object

● A class can have multiple constructors that differ in parameters

○ Which one is invoked depends on how the object is instantiated

Written with the class name as the method name:

● C++ will automatically create a synthesized default constructor if you have no
user-defined constructors

○ Takes no arguments, can be explicitly specified: Point() = default;

Point(const int x, const int y);

Synthesized Default Constructor
class SimplePoint {
 public:
 // no constructors declared!
 int get_x() const { return x_; } // inline member function
 int get_y() const { return y_; } // inline member function
 double Distance(const SimplePoint& p) const;
 void SetLocation(int x, int y);

 private:
 int x_; // data member
 int y_; // data member
}; // class SimplePoint

SimplePoint.h

#include "SimplePoint.h"
... // definitions for Distance() and SetLocation()

int main(int argc, char** argv) {
 SimplePoint x; // invokes synthesized default constructor
 return EXIT_SUCCESS;
}

SimplePoint.cc

36

Synthesized Default Constructor
If you define any constructors, C++ assumes you have defined all the ones you intend
to be available and will not add any others

#include "SimplePoint.h"

// defining a constructor with two arguments
SimplePoint::SimplePoint(const int x, const int y) {
 x_ = x;
 y_ = y;
}

void foo() {
 SimplePoint x; // compiler error: if you define any ctors, C++

// will NOT synthesize a default constructor for
 // you.

 SimplePoint y(1, 2); // works:invokes the 2-int-arguments constructor
} 37

Multiple Constructors (overloading)
#include "SimplePoint.h"

// default constructor
SimplePoint::SimplePoint() {
 x_ = 0;
 y_ = 0;
}

// constructor with two arguments
SimplePoint::SimplePoint(const int x, const int y) {
 x_ = x;
 y_ = y;
}

void foo() {
 SimplePoint x; // invokes the default constructor
 SimplePoint y(1, 2); // invokes the 2-int-arguments ctor
 SimplePoint a[3]; // invokes the default ctor 3 times
} 38

Initialization Lists
C++ lets you optionally declare an initialization list as part of a constructor definition

● Initializes fields according to parameters in the list
● The following two are (nearly) identical:

// constructor with an initialization list
Point::Point(const int x, const int y) : x_(x), y_(y) {
 std::cout << "Point constructed: (" << x_ << ",";
 std::cout << y_<< ")" << std::endl;
}

Point::Point(const int x, const int y) {
 x_ = x;
 y_ = y;
 std::cout << "Point constructed: (" << x_ << ",";
 std::cout << y_<< ")" << std::endl;
}

Body can
be
empty

Initialization vs. Construction

● Data members in initializer list are initialized in the order they are defined in the
class, not by the initialization list ordering (!)
○ Data members that donʼt appear in the initialization list are default

initialized/constructed before body is executed
● Initialization preferred to assignment to avoid extra steps

○ Real code should never mix the two styles

class Point3D {
 public:
 // constructor with 3 int arguments
 Point3D(const int x, const int y, const int z) : y_(y), x_(x) {
 z_ = z;
 }

 private:
 int x_, y_, z_; // data members
}; // class Point3D

First, initialization list is applied.

Next, constructor body is executed.

40

Questions?

Copy
Constructors

cctor

Copy Constructors
C++ has the notion of a copy constructor (cctor)
● Used to create a new object as a copy of an existing object

Point::Point(const int x, const int y) : x_(x), y_(y) { }

// copy constructor
Point::Point(const Point& copyme) {
 x_ = copyme.x_;
 y_ = copyme.y_;
}

void foo() {
 Point x(1, 2); // invokes the 2-int-arguments constructor
 Point y(x); // invokes the copy constructor
 Point z = y; // also invokes the copy constructor
}

● Initializer lists can also be used in copy constructors (preferred) 43

Use a cctor since we are constructing based on x
Point z didnʼt exist before, a ctor must be called

Copy Constructors (w/ initialization list)

Point::Point(const int x, const int y) : x_(x), y_(y) { }

// copy constructor w/ initialization list
Point::Point(const Point& copyme): x_(copyme.x_), y_(copyme.y_) { }

void foo() {
 Point x(1, 2); // invokes the 2-int-arguments constructor
 Point y(x); // invokes the copy constructor
 Point z = y; // also invokes the copy constructor
}

44

Synthesized Copy Constructor
If you donʼt define your own copy constructor, C++ will synthesize one for you
● It will do a shallow copy of all of the fields (i.e. member variables) of your class

○ Does assignment for primitives; could be problematic with pointers
● Sometimes the right thing; sometimes the wrong thing

#include "SimplePoint.h"

... // definitions for Distance() and SetLocation()

int main(int argc, char** argv) {
 SimplePoint x;
 SimplePoint y(x); // invokes synthesized copy constructor
 ...
 return EXIT_SUCCESS;
}

45

// In this example, synthesized cctor is fine

When Do Copies Happen?
The copy constructor is invoked if:

● You initialize an object from another
object of the same type:

● You pass a non-reference object as a
value parameter to a function:

● You return a non-reference object
value from a function:

void foo(Point x) { ... }

Point y; // default ctor
foo(y); // copy ctor

Point x; // default ctor
Point y(x); // copy ctor
Point z = y; // copy ctor

Point foo() {
 Point y; // default ctor
 return y; // copy ctor
}

46

Destructors

Destructors
C++ has the notion of a destructor (dtor)

● Invoked automatically when a class instance is deleted (even via exceptions or
other causes!)

● Place to put your cleanup code – free any dynamic storage or other resources
owned by the object

● Standard C++ idiom for managing dynamic resources

■ Slogan: “Resource Acquisition Is Initialization” (RAII)

Point::~Point() { // destructor
 // do any cleanup needed when a Point object goes away
 // (nothing to do here since we have no dynamic resources)
}

48

Destructor Example
class FileDescriptor {
 public:
 FileDescriptor(char * file) { // Constructor
 fd_ = open(file, O_RDONLY);
 // Error checking omitted
 }
 ~FileDescriptor() { close(fd_); } // Destructor
 int get_fd() const { return fd_; } // inline member function

 private:

int fd_; // data member
}; // class FileDescriptor

#include "FileDescriptor.h"
int main(int argc, char** argv) {
 FileDescriptor fd(foo.txt);
 return EXIT_SUCCESS;
}

FileDescriptor.h

Without destructor, the file
wouldnʼt be closed

Destruct the object when it falls out
of scope (when we return)

Implicit constructors & destructors
Conversion constructors are implicit:
automatically applied when a
constructor is called with one
argument.

If you want a single argument
constructor that is not implicit, must
use
explicit String(const
char* raw);

Destructors are used by
ʻdeleteʼ to clean up when
freeing memory.

Virtual ~String();

You do not call destructors
explicitly

Stack v. Heap
Java: cannot stack-allocate an object (only a pointer to one; all objects are
dynamically allocated on the heap - all variables are pointers to objects)

C: can stack-allocate a struct, then initialize it (An actual object)
C++: stack-allocate and call a constructor (where this is the objectʼs address, as
always, except this is a pointer) Thing t(10000);

Java: new Thing(...) calls constructor, returns heap allocated pointer
C: Use malloc and then initialized, must free exactly once later, untyped pointers
C++: Like Java, new Thing(…), but can also do new int(42). Like C must deallocate,
but must use delete instead of free. (never mix malloc/free with new/ delete!)

52

#include "Point.h"

int main() {
 ...

 Point stack_pt(1, 2); // stack 2-arg constructor
 Point* heap_pt = new Point(1, 2); // heap 2-arg constructor

 Point* heap_pt_arr_err = new Point[2]; // heap default ctor?
 // fails cause no default ctor

 Point* heap_pt_arr_init_lst = new Point[2]{{1, 2}, {3, 4}};
 // C++11
 ...

 delete heap_pt;
 delete[] heap_pt_arr_init_lst;

 return EXIT_SUCCESS;
}

arrays.cc

Arrays Example (class objects)

