CSE 374: Intro to C++

Next up: C++ (Want to read ahead?)

Best place to start: C++ Primer, Lippman, Lajoie, Moo, 5th ed., Addison-Wesley,
2013

Every serious C++ programmer should also read: Effective C++, Meyers, 3rd ed.,

Addison-Wesley, 2005
Best practices for standard C++

Effective Modern C++, Meyers, O’Reilly, 2014
Additional “best practices” for C++11/C++14

Good online source: cplusplus.com

Aside: C++ Primer

It’s hard to learn the “why is it done this way” from % CompletlyRewriton o the New G Standard ¥ ¥
reference docs, and even harder to learn from random stuff /”' p
on the web A~ AR

e Lectures and examples will introduce the main ideas, \

but aren’t everything you’ll need to understand

e Free access through UW libraries

o https://orbiscascade-washington.primo.exlibrisgroup.com/per

malink/01ALLIANCE UW/db578v/cdi _askewsholts vlebooks 9
780133053067

Stanley B. Lippman
Josée Lajoie
copmmeansens Barbara Moo

S

https://orbiscascade-washington.primo.exlibrisgroup.com/permalink/01ALLIANCE_UW/db578v/cdi_askewsholts_vlebooks_9780133053067
https://orbiscascade-washington.primo.exlibrisgroup.com/permalink/01ALLIANCE_UW/db578v/cdi_askewsholts_vlebooks_9780133053067
https://orbiscascade-washington.primo.exlibrisgroup.com/permalink/01ALLIANCE_UW/db578v/cdi_askewsholts_vlebooks_9780133053067

What is C++ ?

A big language - much bigger than C

Conveniences in addition to C (new/delete, function overloading,
bigger std library)

Namespaces - similar to Java
Extras (casts, exceptions, templates, lambda functions)

Object Oriented - has classes and objects similar to Java

Object Oriented Programming

e Encapsulation
o Discrete portions of code keep state and
implementation private while providing public

interfaces
e Abstraction
o The high-level interface is exposed to users
without detailing underlying code.
e Inheritance
o Classes can be derived from other classes
allowing for shared code.
e Polymorphism

o Subclasses implement methods of
superclasses to allow for a consistent
interface.

Why C#+ ?

e C++isC-likein
o User-managed memory
o Headerfiles
o Still use pointers
e C++isJavalikein
o Object Oriented
o Modern additions to language
e Knowing C++ may help understand both C & Java better

C

« We had to work hard to mimic encapsulation,
abstraction

O Encapsulation: hiding implementation details

m Used header file conventions and the “static” specifier to separate private functions from public
functions

m Cast structures to (void*) to hide implementation-specific details

O Abstraction: associating behavior with encapsulated state

m Function that operate on a LinkedList were not really tied to the linked list structure

m We passed a linked list to a function, rather than invoking a method on a linked list instance

+ +
o G

« A major addition is support for classes and objects!

O Classes

m Public, private, and protected methods and instance variables

m (multiple!) inheritance

O Polymorphism

m Static polymorphism: multiple functions or methods with the same name, but different argument
types (overloading)

e Works for all functions, not just class members

m Dynamic (subtype) polymorphism: derived classes can override methods of parents, and methods
will be dispatched correctly

C

« We had to emulate generic data structures

O Generic linked list using void* payload

O Pass function pointers to generalize different “methods” for data
structures

m Comparisons, deallocation, pickling up state, etc.

TG
« Supports templates to facilitate generic data types

O Parametric polymorphism - same idea as Java generics, but
different in details, particularly implementation

O Todeclare that xis a vector of ints: vector<int> x;
O To declare that x is a vector of strings: vector<string> x;

O To declare that x is a vector of (vectors of floats):
vector<vector<float>> x;

10

We had to be careful about namespace collisions

o Cdistinguishes between external and internal linkage

m Use static to preventaname from being visible outside a source file (as
close as C gets to “private”)

m Otherwise, nameis global and visible everywhere

o We used naming conventions to help avoid collisions
in the global namespace

B eg LLIteratorNextvs.HTIteratorNext, etc.

11

+ +
o Cer

« Permits a module to define its own namespace!

O The linked list module could define an “LL” namespace while
the hash table module could define an “HT” namespace

O Both modules could define an Iterator class

m Onewould be globallynamed LL: : Tterator

m The other would be globally named HT: : Tterator

o Classes also allow duplicate names without collisions

O Namespaces group and isolate names in collections of classes
and other “global” things (somewhat like Java packages)

m Entire C++ standard library is in a namespace std (more later...)

12

C

« Cdoes not provide any standard data structures
0 We had to implement our own linked list and hash table

O As a C programmer, you often reinvent the wheel... poorly
m Maybe if you’re clever you’ll use somebody else’s libraries

m But C’s lack of abstraction, encapsulation, and generics means you’ll probably end up tinkering
with them or tweak your code to use them

13

TG
« The C++standard library is huge!

O Generic containers: bitset, queue, list, associative array
(including hash table), deque, set, stack, and vector

m And iterators for most of these

O A stringclass: hides the implementation of strings

O Streams: allows you to stream data to and from objects,
consoles, files, strings, and so on

o And more...

14

C

« Errorhandlingis a pain
O Have to define error codes and return them

O Customers have to understand error code conventions and need
to constantly test return values

O e.g.ifa () callsb (),whichcallsc ()

B a dependsonb to propagate an errorin c back to it

15

T Cr
« Errorhandlingis STILL a pain, but now we have
exceptions

O try/throw/catch

o If used with discipline, can simplify error processing

m But, if used carelessly, can complicate memory management
m Consider:a () callsb (), whichcalls ¢ ()

e If c () throws an exception thatb () doesn’t catch, you might not get a
chance to clean up resources allocated inside b ()

O But much C++ code still needs to work with C & old C++ libraries
that are not exception-safe, so still uses return codes, exit(), etc.

m We won’tiice (and Gooole <tvle ctiide doesn’t 11ce either)

16

Some Tasks StillHurtin =~ C++

« Memory management

O C++ has no garbage collector

B You have to manage memory allocation and deallocation and track ownership of memory

m It’s still possible to have leaks, double frees, and so on

O But there are some things that help
® “Smart pointers”
e Classes that encapsulate pointers and track reference counts
e Deallocate memory when the reference count goes to zero

m C++’s destructors permit a pattern known as “Resource Allocation Is Initialization” (RAII) (terrible
name but super useful idea)

e Useful for releasing memory, locks, database transactions, and more

17

Some Tasks Still Hurt In C++

o C++doesn’t guarantee type or memory safety

O You can still:

Forcibly cast pointers between incompatible types
Walk off the end of an array and smash memory

Have dangling pointers

Conjure up a pointer to an arbitrary address of your choosing

18

+

“~ C++ Has Many, Many Features

Operator overloading

O Your class can define methods for handling “+”, “->", etc.

Object constructors, destructors

o Particularly handy for stack-allocated objects

Reference types

O True call-by-reference instead of always call-by-value
Advanced Objects

O Multiple inheritance, virtual base classes, dynamic dispatch

19

How to Think About C++

Set of styles
and ways to
use C++

N

Good styles
and robust
engineering

, Set of styles
practices

and ways to
use C 20

Or...

In the hands of a disciplined
programmer, C++ is a powerful tool

But if you’re not so disciplined about
how you use C++...

21

Hello World in C

\

helloworld.c

#include <stdio.h> // for printf ()
#include <stdlib.h> // for EXIT SUCCESS

int main(int argc, char** argv)
printf ("Hello, World!\n");
return EXIT SUCCESS;

}

{

Compile with gcc:

gcc -Wall -g -std=cll -o hello helloworld.c
You should be able to describe in detail everything in this code

22

Hello World in C++

helloworld.cc

r#include <iostream>// for cout, endl
#include <cstdlib> // for EXIT SUCCESS

int main(int argc, char** argv) {
std::cout << "Hello, World!" << std::endl;
return EXIT SUCCESS;

}

\ J

Looks simple enough...

Compile with g++ instead of gcc:

gt+ -Wall -g -std=c++17 -0 helloworld helloworld.cc

23

Example: Hello World in C++

Hello World in C++

<£I::Eade <lostrea

#include <cstdlib>

helloworld.cc

int main(int argc, char** argv) {
std::cout << "Hello, World!" << std::endl;
return EXIT SUCCESS;

}

\ S

iostreamis part of the C++ standard library
e Note: you don’twrite “. h” when you include C++ standard library headers
o Butyou do for local headers (e.g. #include "11.h")
® iostreamdeclares stream objectinstancesin the “std” namespace

© eg.std::cin, std::cout, std::cerr

Hello World in C++

p
#include <iostream>

Zinclude <cstdlib> >

std::cout << "Hello,
return EXIT SUCCESS;

}

\

helloworld.cc

int main(int argc, char** argv) {

World!" << std::endl;

cstdlibisthe Cstandard library’s stdlib.h

Nearly all C standard library functions are available to you
o ForCheader stdlib.h,youshould #include <cstdlib>
We include it here for EXIT SUCCESS, as usual

26

Hello World in C++

helloworld.cc

r#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {

<< "Hello, World!" << std::endl;

return EXIT SUCCESS;
}

\ S

std: :cout isthe “cout” object instance declared by i ostream, living within the
“std” namespace

e C++’snamefor stdout, std:cout isan object of class ostream
e Used to format and write output to the console

e Theentire standard library is in the namespace std

Hello World in C++

helloworld.cc

\

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {

<< "Hello, World!" << std::endl;

return EXIT SUCCESS;
}

C++ has a stronger distinction between objects and primitive types
e Theseinclude the familiar ones from C:

char, short, int, long, float, double, etc.
e C++alsodefinesbool as a primitive type (woo-hoo!)
o Useit!

Hello World in C++

helloworld.cc

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
std::cout <:>"Hello, World!" << std::endl;
return EXIT SUCCESS;

}

\ S

“<<”is an operator defined by the C++ language
e Defined in C as well: usually it bit-shifts integers (in C/C++)
e C++allows classes and functions to overload operators!
o Here,the ostreamclass overloads “<<”
o Ie.itdefines different member functions (methods) that are invoked when an
ostreamis the left-hand side of the << operator 29

Hello World in C++

helloworld.cc

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
. | » Std::icout <:>"Hello, World!" << std::endl;
ostream object return EXIT SUCCESS; \

} still a char*

\ S

ostream has many different methods to handle <<
e The functions differ in the type of the right-hand side (RHS) of <<
e eg.ifyoudostd::cout << "foo"; ,thenC++invokes cout’sfunctionto
handle << with RHS char*

Hello World in C++

helloworld.cc

#include <iostream>
#include <cstdlib>

This is equivalent to:

int main (int argc, char** argv) { std::cout <<
std: :cout <:>"Hello, World!" << std::endl; “Hello,world!”;
return EXIT SUCCESS; <—_ | std:icout <<
- std::endl;
) td d1

\ S

The ostream class’ member functions that handle << return a reference to themselves
e Whenstd::cout << "Hello, World!"™; isevaluated:
o A member function of the std: : cout objectis invoked
o It buffersthestring"Hello, World!" forthe console
o And itreturns areferenceto std: : cout

31

Hello World in C++

helloworld.cc

r#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {

std::cout << "Hello, World!" <<

return EXIT SUCCESS;
U)
Next, another member function on std: : cout is invoked to handle << with RHS
std: :endl
e std::endlisa pointertoa “manipulator” function
o This manipulator function writes newline (' \n"') tothe ostreamitis
invoked on and then flushes the ost ream’s buffer
o This enforces that something is printed to the console at this point

e |Ifyouneedtoprinta'\n',youshould probablyuse std: :endl -

Wow...

You should be surprised and scared at this point
e C++makes it easy to hide a significant amount of complexity

O

©)

helloworld.cc

r#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
std: :cout << "Hello, World!" << std::endl;
return EXIT SUCCESS;

} J

\

It’s powerful, but really dangerous

Once you mix everything together (templates, operator overloading, method
overloading, generics, multiple inheritance), it can get really hard to know

what’s actually happening!

33

Questions?

Let's Refine It a Bit

helloworld2.cc

-
#include <iostream> // for cout, endl
#include <cstdlib> // for EXIT SUCCESS

Finclude <string> >/ for string

using namespace std;

int main(int argc, char** argv) {
string hello("Hello, World!");
cout << hello << endl;
return EXIT SUCCESS;

}

\.

\

C++’s standard library hasa std: : stringclass
Include the string header to use it

©)

http://www.cplusplus.com/reference/string/

35

http://www.cplusplus.com/reference/string/

Let's Refine It a Bit helloworld?.cc

N\

-
#include <iostream> // for cout, endl
#include <cstdlib> // for EXIT SUCCESS
#include <string> // for string

Using namespace std; >

int main(int argc, char** argv) {
string hello("Hello, World!");
cout << hello << endl;
return EXIT SUCCESS;

} J

.

The using keyword introduces a namespace (or part of) into the current region
® using namespace std; importsall namesfromstd::

o Linter will complain, but we will ignore for this class
@ using std::cout; importsonlystd: :cout (usedascout)

Let's Refine It a Bit

helloworld2.cc

e N
#include <iostream> // for cout, endl
#include <cstdlib> // for EXIT SUCCESS
#include <string> // for string

Using namespace std; >

int main(int argc, char** argv) {
string hello("Hello, World!");
cout << hello << endl;
return EXIT SUCCESS;

}

\. J

Benefits of using namespace std;

e Wecannowrefertostd: :stringasstring, std: :cout ascout,and
std: :endl asendl

Let's Refine It a Bit

helloworld2.cc

r N
#include <iostream> // for cout, endl
#include <cstdlib> // for EXIT SUCCESS
#include <string> // for string

using namespace std;

int main(int argc, char** argv) {
C_string hell§)"Hello, World!");
cout << hello << endl;
return EXIT SUCCESS;

}

\. J

Here we are instantiatinga std: : string object on the stack (an ordinary local variable)

Passing the Cstring "Hello, World!" toits constructor method

hello is deallocated (and its destructor invoked) whenmain returns

38

Let's Refine It a Bit helloworld?.cc

N\

-
#include <iostream> // for cout, endl
#include <cstdlib> // for EXIT SUCCESS
#include <string> // for string

using namespace std;

int main(int argc, char** argv) {
C_string hell§)"Hello, World!");
cout << hello << endl;
return EXIT SUCCESS;

}

\. J

The C++ string library also overloads the << operator

e Defines afunction (not an object method) thatis invoked when the LHS is ostream
andtheRHSis std: :string
o http://www.cplusplus.com/reference/string/string/operator<</

http://www.cplusplus.com/reference/string/string/operator%3c%3c/

String Concatenation

concat.cc
(#include <iostream> // for cout, endl h
#include <cstdlib> // for EXIT SUCCESS
#include <string> // for string
using namespace std;
int main(int argc, char** argv) {
string hello ("Hello");
hello =", World!™;
cout << hello << endl;
return EXIT SUCCESS;
J y

The string class overloads the “+” operator

e Creates and returns a new string that is the concatenation of the LHS and RHS

40

String Assighnment

concat.cc

(#include <iostream> // for cout, endl h
#include <cstdlib> // for EXIT SUCCESS
#include <string> // for string
using namespace std;
int main(int argc, char** argv) {

string hello ("Hello");
@ello Dhello + ", World!";
cout << hello << endl;
return EXIT SUCCESS;
\J J

The string class overloads the “=" operator

Copies the RHS and replaces the string’s contents with it

41

String Manipulation concat.cc

int main(int argc, char** argv) {
string hello("Hello");

< hello = hello + ", World!";=™>
cout << hello << endl;
return EXIT SUCCESS;

}

\

This statement is complex!
e First “+” creates a string that is the concatenation of he110’s current contents and
", World!"
e Then “=" creates a copy of the concatenation to storeinhello

e Withautthe suntactic suigar:

O [hello.operator=(hello.operator+ ", World!"));]

Operators are just member functions

C and C++

helloworld3.cc
#include <cstdio> // for printf
#include <cstdlib> // for EXIT SUCCESS

int main(int argc, char** argv) {
printf ("Hello from C!\n");
return EXIT SUCCESS;

L} v

Cis (roughly) a subset of C++

You can still use print£ - but bad style in ordinary C++ code
o E.gUsestd::cerrinsteadof frpintf (stderr, ..)

Can mix C and C++ idioms if needed to work with existing code, but avoid mixing if
you can

o Use C++(17)

43

Reading

echonum.cc
\

-
#include <iostream> // for cout, endl
#include <cstdlib> // for EXIT SUCCESS

using namespace std;

int main(int argc, char** argv) {
int num;
cout << "Type a number: '";
cin >> num;
cout << "You typed: " << num << endl;
return EXIT SUCCESS;

}

. J

std: :cinisanobjectinstance of class istream

Supports the >> operator for “extraction”
o Canbeusedin conditionals! (std: :cin>>num) is true if successful
Has a getline () method and methods to detect and clear errors

44

C++ References

Review: Pointer Note: Arrow points

to next instruction.
A pointer is a variable containing an address

e Modifying the pointer doesn’t modify what it points to, but you can access/modify
what it points to by dereferencing
e These workthe samein Cand C++

- N
int main(int argc, char** argv) { X 5

int x =5, y = 10;
—}p Int* z = &x;

Wz o= AL y 10
x += 1;

z = &y;
*z += 1; r4

return EXIT_SUCCESS;

\} J

pointer.cc “6

Review: Pointer

A pointer is a variable containing an address
e Modifying the pointer doesn’t modify what it points to, but you can access/modify
what it points to by dereferencing
e TheseworkthesameinCand C++

- N
int main(int argc, char** argv) { X 5

int x =5, y = 10;
int* z = &x;

—t)p *z += 1; y 10
x += 1;
z = &y
*z +=

: y Ox7fff...ad

return EXIT_SUCCESS;

\} J

pointer.cc 4

Review: Pointer

A pointer is a variable containing an address
e Modifying the pointer doesn’t modify what it points to, but you can access/modify
what it points to by dereferencing
e TheseworkthesameinCand C++

(int main (int argc, char** argv) {) X 6
int x =5, y = 10;
int* z = &x;
*z +=1; // sets x to 6 y 10
p x += 1;
z = &y;
Xz += 1; y 4 OxTfff...a4
return EXIT SUCCESS;
U y

pointer.cc 48

Review: Pointer

A pointer is a variable containing an address

e Modifying the pointer doesn’t modify what it points to, but you can access/modify

what it points to by dereferencing
e These workthe samein Cand C++

-
int main(int argc, char** argv) {

int x =5, y = 10;

int* z = &x;

*z += 1; // sets x to 6

x +=1; // sets x (and *z) to 7
—p Z = &Y;

*z +=1;

return EXIT_SUCCESS;

U

J

pointer.cc

y 10

y OxTfff...a4

49

Review: Pointer

A pointer is a variable containing an address

e Modifying the pointer doesn’t modify what it points to, but you can access/modify

what it points to by dereferencing
e These workthe samein Cand C++

-
int main(int argc, char** argv) {

int x =5, y = 10;

int* z = &x;

*z += 1; // sets x to 6

x +=1; // sets x (and *z) to 7
z = &y;

-1 *z += 1;

return EXIT_SUCCESS;

U

J

pointer.cc

y 4

10

OxTfff...a0

50

Review: Pointer

A pointer is a variable containing an address

e Modifying the pointer doesn’t modify what it points to, but you can access/modify

what it points to by dereferencing
e These workthe samein Cand C++

-
int main(int argc, char** argv) {

int x =5, y = 10;

int* z = &x;

*z += 1; // sets x to 6

x +=1; // sets x (and *z) to 7
z = &y;

Az =,

—» return EXIT SUCCESS;

U

J

pointer.cc

y 4

11

OxTfff...a0

51

References

A reference is an alias for another variable

e Alias: another name that is bound to the aliased variable
o Mutating a reference is mutating the aliased variable

e Introduced in C++ as part of the language

e N
int main(int argc, char** argv) {

int x =5, y = 10;

—»int& z = x;
z +=1; L . .
w e Al When we use '&' in a type declaration, it
’ is a reference.
zZ = Yy
z += 1; svarisstill “address of var”

return EXIT SUCCESS;

U J
reference.cc

10

52

References

A reference is an alias for another variable
Alias: another name that is bound to the aliased variable

o Mutating a reference is mutating the aliased variable
Introduced in C++ as part of the language
N
(int main (int argc, char** argv) {
int x =5, y = 10;
int& z = x; // binds the name "z" to x
—p-z += 1;
X += 1;
= -
return EXIT SUCCESS;
U J

reference.cc

10

53

References

A reference is an alias for another variable

e Alias: another name that is bound to the aliased variable
o Mutating a reference is mutating the aliased variable

e Introduced in C++ as part of the language

,
int main(int argc, char** argv) {

int x =5, y = 10;

z +=1; // sets z (and x) to 6
—1x +t= 1;

z = Vs
zZ = -

return EXIT SUCCESS;

U

int& z = x; // binds the name "z" to x

J

reference.cc

54

References

A reference is an alias for another variable
e Alias: another name that is bound to the aliased variable
o Mutating a reference is mutating the aliased variable

e Introduced in C++ as part of the language

e N
int main(int argc, char** argv) {

int x =5, y = 10;

int& z = x; // binds the name "z" to x
z +=1; // sets z (and x) to 6

x +=1; // sets x (and z) to 7

—»z = Vi

return EXIT SUCCESS;

U J
reference.cc

References

A reference is an alias for another variable

e Alias: another name that is bound to the aliased variable
o Mutating a reference is mutating the aliased variable

e Introduced in C++ as part of the language

e N
int main(int argc, char** argv) {

int x =5, y = 10;
int& z = x; // binds the name "z" to x
z +=1; // sets z (and x) to 6
x +=1; // sets x (and z) to 7
——z = y; Normalassignment

There is no way to rebind a

z +=1; reference to refer to a different
object. Because there is no way
return EXIT SUCCESS; to rebind a reference,
) - references must be initialized.)

reference.cc

References

A reference is an alias for another variable

e Alias: another name that is bound to the aliased variable
o Mutating a reference is mutating the aliased variable

e Introduced in C++ as part of the language

e N
int main(int argc, char** argv) {

int x =5, y = 10;

int& z = x; // binds the name "z" to x

z +=1; // sets z (and x) to 6

x +=1; // sets x (and z) to 7

yv; // sets z (and x) to the value of y

—pz += 1;

N
I

return EXIT SUCCESS;

U J
reference.cc

References

A reference is an alias for another variable

e Alias: another name that is bound to the aliased variable
o Mutating a reference is mutating the aliased variable

e Introduced in C++ as part of the language

,
int main(int argc, char** argv) {

int x =5, y = 10;

int& z = x; // binds the name "z" to x
z +=1; // sets z (and x) to 6

+=1; // sets x (and z) to 7

X
Z
z +=1; // sets z (and x) to 11

—+-return EXIT SUCCESS;

U

y; // sets z (and x) to the value of y

J

reference.cc

11

10

58

Some Symbols Have Multiple Meanings

& and * are used as both an operator in an expression and as part of a declaration. The
context in which a symbol is used determines what the symbol means:

int 1 = 42;

int& r = 1i; // & follows a type and is part of a declaration; r is a reference
int* p; /] * follows a type and is part of a declaration; p is a pointer
p = &i; // &is used in an expression as the address-of operator

*P o= 1; // *is used in an expression as the dereference operator
int& r2 = *p; // &is part of the declaration; * is the dereference operator

In declarations, & and * are used to form compound types. In expressions, these same
symbols are used to denote an operator.

Pass-By-Reference

C++ allows you to use real pass-by-reference

e C(lient passesin an argument with normal syntax

o Function uses reference parameters with normal syntax

o Modifying a reference parameter modifies the caller’s argument!

(void swap (1nt& x, int& y) {

int tmp = x;
X =y
y = tmp;

}

int main(int argc, char** argv) {
int a =5, b = 10;
——p-swap (a, b);
cout << "a: " << a <<« "; b: " <K<K b << endl;
return EXIT SUCCRESS;

U

N

J

passbyreference.cc

(main) a 5

(main) b 10

60

Pass-By-Reference

C++ allows you to use real pass-by-reference

e C(lient passesin an argument with normal syntax
o Function uses reference parameters with normal syntax
o Modifying a reference parameter modifies the caller’s argument!

7 . ' i)
volid swap(int& x, 1nté& vy) |

int tmp = x; -
X = y;) ‘ :
Parameters are attached to variables .
— . : main) a 5
} Y Lo provided by caller ()
int main(iht ar@c, char** argv) { (main) b 10

int a = 5,.b = 10;

—| pswap(a, b);

cout << "a: " << a <<« "; b: " <K<K b << endl;
return EXIT SUCCRESS;

. } J
passbyreference.cc

61

Pass-By-Reference

C++ allows you to use real pass-by-reference

e C(lient passesin an argument with normal syntax
o Function uses reference parameters with normal syntax
o Modifying a reference parameter modifies the caller’s argument!

(, . . N
volid swap(int& x, 1nté& vy) |
——P int tmp = x;

X =Yy; .
v o= s (main) a 5

} (swap) X

int main(int argc, char** argv) { (main) b
int a =5, b = 10; (swap) 10
swap (a, b); 204
cout << "a: " << a << "; b: " << b << endl; (swap) tmp
return EXIT SUCCRESS;

J /

passbyreference.cc

62

Pass-By-Reference

C++ allows you to use real pass-by-reference

e C(lient passesin an argument with normal syntax
o Function uses reference parameters with normal syntax
o Modifying a reference parameter modifies the caller’s argument!

(, . . N
volid swap(int& x, 1nté& vy) |
int tmp = x;
< = y; :
v = g (main) a 5
} (swap) x
int main(int argc, char** argv) { (main) b
int a = 5, b = 10; — 10
swap (a, b); 204
cout << "a: " << a << "; b: " << b << endl; (swap) tmp 5
return EXIT SUCCRESS;
J /

passbyreference.cc

63

Pass-By-Reference

C++ allows you to use real pass-by-reference

e C(lient passesin an argument with normal syntax
o Function uses reference parameters with normal syntax
o Modifying a reference parameter modifies the caller’s argument!

(, . . N
volid swap(int& x, 1nté& vy) |
int tmp = x;
X =Yy; .
—4»y = tmp; (main) a "
} (swap) x
int main(int argc, char** argv) { (main) b
int a =5, b = 10; (swap) 10
swap (a, b); 204
cout << "a: " << a << "; b: " << b << endl; (swap)tmp 5
return EXIT SUCCRESS;
J /

passbyreference.cc

64

Pass-By-Reference

C++ allows you to use real pass-by-reference

e C(lient passesin an argument with normal syntax

o Function uses reference parameters with normal syntax

o Modifying a reference parameter modifies the caller’s argument!

(void swap (1nt& x, int& y) {

int tmp = x;
X = y;
y = tmp;

— >

int main(int argc, char** argv) {
int a =5, b = 10;
swap (a, b);
cout << "a: " << a <<« "; b: " <K<K b << endl;
return EXIT SUCCRESS;

U

N

J

passbyreference.cc

65

—tP cout << "a: " << a << "; b: " << b << endl;

Pass-By-Reference

C++ allows you to use real pass-by-reference

e C(lient passesin an argument with normal syntax
o Function uses reference parameters with normal syntax
o Modifying a reference parameter modifies the caller’s argument!

7 . ' i)
volid swap(int& x, 1nté& vy) |

int tmp = x;
X = y; .
vy = tmp; (main) a 10

}

int main(int argc, char** argv) {
int a =5, b = 10;
swap (a, b);

(main) b 5

return EXIT_SUCCESS;
U J
passbyreference.cc

Best Practices

Programmers accustomed to programming in C often use pointer parameters to
access objects outside a function. In C++, programmers generally use reference
parameters instead.

