
CSE 374: Intro to C++

Next up: C++ (Want to read ahead?)
Best place to start: C++ Primer, Lippman, Lajoie, Moo, 5th ed., Addison-Wesley,
2013

Every serious C++ programmer should also read: Effective C++, Meyers, 3rd ed.,
Addison-Wesley, 2005

Best practices for standard C++

Effective Modern C++, Meyers, OʼReilly, 2014
Additional “best practices” for C++11/C++14

Good online source: cplusplus.com

Aside: C++ Primer
Itʼs hard to learn the “why is it done this way” from
reference docs, and even harder to learn from random stuff
on the web

● Lectures and examples will introduce the main ideas,
but arenʼt everything youʼll need to understand

● Free access through UW libraries

○ https://orbiscascade-washington.primo.exlibrisgroup.com/per
malink/01ALLIANCE_UW/db578v/cdi_askewsholts_vlebooks_9
780133053067

https://orbiscascade-washington.primo.exlibrisgroup.com/permalink/01ALLIANCE_UW/db578v/cdi_askewsholts_vlebooks_9780133053067
https://orbiscascade-washington.primo.exlibrisgroup.com/permalink/01ALLIANCE_UW/db578v/cdi_askewsholts_vlebooks_9780133053067
https://orbiscascade-washington.primo.exlibrisgroup.com/permalink/01ALLIANCE_UW/db578v/cdi_askewsholts_vlebooks_9780133053067

What is C++ ?
A big language - much bigger than C

Conveniences in addition to C (new/delete, function overloading,
bigger std library)

Namespaces - similar to Java

Extras (casts, exceptions, templates, lambda functions)

Object Oriented - has classes and objects similar to Java

Object Oriented Programming
● Encapsulation

○ Discrete portions of code keep state and
implementation private while providing public
interfaces

● Abstraction
○ The high-level interface is exposed to users

without detailing underlying code.
● Inheritance

○ Classes can be derived from other classes
allowing for shared code.

● Polymorphism
○ Subclasses implement methods of

superclasses to allow for a consistent
interface.

Why C++ ?
● C++ is C-like in

○ User-managed memory
○ Header files
○ Still use pointers

● C++ is Java like in
○ Object Oriented
○ Modern additions to language

● Knowing C++ may help understand both C & Java better

C
● We had to work hard to mimic encapsulation,

abstraction
○ Encapsulation: hiding implementation details

■ Used header file conventions and the “static” specifier to separate private functions from public
functions

■ Cast structures to (void*) to hide implementation-specific details

○ Abstraction: associating behavior with encapsulated state
■ Function that operate on a LinkedList were not really tied to the linked list structure

■ We passed a linked list to a function, rather than invoking a method on a linked list instance

7

✨ C++ ✨
● A major addition is support for classes and objects!
○ Classes

■ Public, private, and protected methods and instance variables

■ (multiple!) inheritance

○ Polymorphism
■ Static polymorphism: multiple functions or methods with the same name, but different argument

types (overloading)

● Works for all functions, not just class members
■ Dynamic (subtype) polymorphism: derived classes can override methods of parents, and methods

will be dispatched correctly

8

C
● We had to emulate generic data structures
○ Generic linked list using void* payload

○ Pass function pointers to generalize different “methods” for data
structures
■ Comparisons, deallocation, pickling up state, etc.

9

✨ C++ ✨
● Supports templates to facilitate generic data types
○ Parametric polymorphism – same idea as Java generics, but

different in details, particularly implementation

○ To declare that x is a vector of ints: vector<int> x;

○ To declare that x is a vector of strings: vector<string> x;

○ To declare that x is a vector of (vectors of floats):
vector<vector<float>> x;

10

C

● We had to be careful about namespace collisions
○ C distinguishes between external and internal linkage

■ Use static to prevent a name from being visible outside a source file (as
close as C gets to “private”)

■ Otherwise, name is global and visible everywhere

○ We used naming conventions to help avoid collisions
in the global namespace
■ e.g. LLIteratorNext vs. HTIteratorNext, etc.

11

✨ C++ ✨
● Permits a module to define its own namespace!
○ The linked list module could define an “LL” namespace while

the hash table module could define an “HT” namespace

○ Both modules could define an Iterator class
■ One would be globally named LL::Iterator

■ The other would be globally named HT::Iterator

● Classes also allow duplicate names without collisions
○ Namespaces group and isolate names in collections of classes

and other “global” things (somewhat like Java packages)
■ Entire C++ standard library is in a namespace std (more later…)

12

C
● C does not provide any standard data structures
○ We had to implement our own linked list and hash table

○ As a C programmer, you often reinvent the wheel… poorly
■ Maybe if youʼre clever youʼll use somebody elseʼs libraries

■ But Cʼs lack of abstraction, encapsulation, and generics means youʼll probably end up tinkering
with them or tweak your code to use them

13

✨ C++ ✨
● The C++ standard library is huge!
○ Generic containers: bitset, queue, list, associative array

(including hash table), deque, set, stack, and vector
■ And iterators for most of these

○ A string class: hides the implementation of strings

○ Streams: allows you to stream data to and from objects,
consoles, files, strings, and so on

○ And more…

14

C
● Error handling is a pain
○ Have to define error codes and return them

○ Customers have to understand error code conventions and need
to constantly test return values

○ e.g. if a() calls b(), which calls c()
■ a depends on b to propagate an error in c back to it

15

✨ C++ ✨
● Error handling is STILL a pain, but now we have

exceptions
○ try / throw / catch

○ If used with discipline, can simplify error processing
■ But, if used carelessly, can complicate memory management

■ Consider: a() calls b(), which calls c()

● If c() throws an exception that b() doesnʼt catch, you might not get a
chance to clean up resources allocated inside b()

○ But much C++ code still needs to work with C & old C++ libraries
that are not exception-safe, so still uses return codes, exit(), etc.
■ We wonʼt use (and Google style guide doesnʼt use either) 16

Some Tasks Still Hurt in ✨ C++ ✨
● Memory management
○ C++ has no garbage collector

■ You have to manage memory allocation and deallocation and track ownership of memory

■ Itʼs still possible to have leaks, double frees, and so on

○ But there are some things that help
■ “Smart pointers”

● Classes that encapsulate pointers and track reference counts
● Deallocate memory when the reference count goes to zero

■ C++ʼs destructors permit a pattern known as “Resource Allocation Is Initialization” (RAII) (terrible
name but super useful idea)

● Useful for releasing memory, locks, database transactions, and more
17

Some Tasks Still Hurt in ✨ C++ ✨
● C++ doesnʼt guarantee type or memory safety
○ You can still:

■ Forcibly cast pointers between incompatible types

■ Walk off the end of an array and smash memory

■ Have dangling pointers

■ Conjure up a pointer to an arbitrary address of your choosing

18

✨ C++ ✨ Has Many, Many Features
● Operator overloading
○ Your class can define methods for handling “+”, “->”, etc.

● Object constructors, destructors
○ Particularly handy for stack-allocated objects

● Reference types
○ True call-by-reference instead of always call-by-value

● Advanced Objects
○ Multiple inheritance, virtual base classes, dynamic dispatch

19

How to Think About C++

20

Set of styles
and ways to

use C++

Set of styles
and ways to

use C

Good styles
and robust

engineering
practices

Or…

21

In the hands of a disciplined
programmer, C++ is a powerful tool

But if you’re not so disciplined about
how you use C++…

Hello World in C

● Compile with gcc:

● You should be able to describe in detail everything in this code

#include <stdio.h> // for printf()
#include <stdlib.h> // for EXIT_SUCCESS

int main(int argc, char** argv) {
 printf("Hello, World!\n");
 return EXIT_SUCCESS;
}

helloworld.c

gcc -Wall -g -std=c11 -o hello helloworld.c

22

Hello World in C++

Looks simple enough…
● Compile with g++ instead of gcc:

#include <iostream>// for cout, endl
#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {
 std::cout << "Hello, World!" << std::endl;
 return EXIT_SUCCESS;
}

g++ -Wall -g -std=c++17 -o helloworld helloworld.cc

helloworld.cc

23

Example: Hello World in C++

Hello World in C++

iostream is part of the C++ standard library
● Note: you donʼt write “.h” when you include C++ standard library headers

○ But you do for local headers (e.g. #include "ll.h")
● iostream declares stream object instances in the “std” namespace

○ e.g. std::cin, std::cout, std::cerr

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
 std::cout << "Hello, World!" << std::endl;
 return EXIT_SUCCESS;
}

helloworld.cc

25

Hello World in C++

cstdlib is the C standard libraryʼs stdlib.h
● Nearly all C standard library functions are available to you

○ For C header stdlib.h, you should #include <cstdlib>
● We include it here for EXIT_SUCCESS, as usual

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
 std::cout << "Hello, World!" << std::endl;
 return EXIT_SUCCESS;
}

helloworld.cc

26

Hello World in C++

std::cout is the “cout” object instance declared by iostream, living within the
“std” namespace

● C++ʼs name for stdout, std:cout is an object of class ostream

● Used to format and write output to the console

● The entire standard library is in the namespace std

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
 std::cout << "Hello, World!" << std::endl;
 return EXIT_SUCCESS;
}

helloworld.cc

27

Hello World in C++

C++ has a stronger distinction between objects and primitive types
● These include the familiar ones from C:

char, short, int, long, float, double, etc.
● C++ also defines bool as a primitive type (woo-hoo!)

○ Use it!

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
 std::cout << "Hello, World!" << std::endl;
 return EXIT_SUCCESS;
}

helloworld.cc

28

Hello World in C++

“<<” is an operator defined by the C++ language
● Defined in C as well: usually it bit-shifts integers (in C/C++)
● C++ allows classes and functions to overload operators!

○ Here, the ostream class overloads “<<”
○ i.e. it defines different member functions (methods) that are invoked when an

ostream is the left-hand side of the << operator

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
 std::cout << "Hello, World!" << std::endl;
 return EXIT_SUCCESS;
}

helloworld.cc

29

Hello World in C++

ostream has many different methods to handle <<
● The functions differ in the type of the right-hand side (RHS) of <<
● e.g. if you do std::cout << "foo"; , then C++ invokes coutʼs function to

handle << with RHS char*

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
 std::cout << "Hello, World!" << std::endl;
 return EXIT_SUCCESS;
}

helloworld.cc

30

ostream object

still a char*

Hello World in C++

The ostream classʼ member functions that handle << return a reference to themselves
● When std::cout << "Hello, World!"; is evaluated:

○ A member function of the std::cout object is invoked
○ It buffers the string "Hello, World!" for the console
○ And it returns a reference to std::cout

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
 std::cout << "Hello, World!" << std::endl;
 return EXIT_SUCCESS;
}

helloworld.cc

31

This is equivalent to:
std::cout <<
“Hello,world!”;
std:cout <<
std::endl;

Hello World in C++

Next, another member function on std::cout is invoked to handle << with RHS
std::endl
● std::endl is a pointer to a “manipulator” function

○ This manipulator function writes newline ('\n') to the ostream it is
invoked on and then flushes the ostreamʼs buffer

○ This enforces that something is printed to the console at this point
● If you need to print a '\n', you should probably use std::endl

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
 std::cout << "Hello, World!" << std::endl;
 return EXIT_SUCCESS;
}

helloworld.cc

32

Wow…

You should be surprised and scared at this point
● C++ makes it easy to hide a significant amount of complexity

○ Itʼs powerful, but really dangerous
○ Once you mix everything together (templates, operator overloading, method

overloading, generics, multiple inheritance), it can get really hard to know
whatʼs actually happening!

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
 std::cout << "Hello, World!" << std::endl;
 return EXIT_SUCCESS;
}

helloworld.cc

33

Questions?

Let’s Refine It a Bit

C++ʼs standard library has a std::string class
● Include the string header to use it

○ http://www.cplusplus.com/reference/string/

35

#include <iostream> // for cout, endl
#include <cstdlib> // for EXIT_SUCCESS
#include <string> // for string

using namespace std;

int main(int argc, char** argv) {
 string hello("Hello, World!");
 cout << hello << endl;
 return EXIT_SUCCESS;
}

helloworld2.cc

http://www.cplusplus.com/reference/string/

Let’s Refine It a Bit

The using keyword introduces a namespace (or part of) into the current region

● using namespace std; imports all names from std::
○ Linter will complain, but we will ignore for this class

● using std::cout; imports only std::cout (used as cout)
36

#include <iostream> // for cout, endl
#include <cstdlib> // for EXIT_SUCCESS
#include <string> // for string

using namespace std;

int main(int argc, char** argv) {
 string hello("Hello, World!");
 cout << hello << endl;
 return EXIT_SUCCESS;
}

helloworld2.cc

Let’s Refine It a Bit

Benefits of
● We can now refer to std::string as string, std::cout as cout, and

std::endl as endl
37

#include <iostream> // for cout, endl
#include <cstdlib> // for EXIT_SUCCESS
#include <string> // for string

using namespace std;

int main(int argc, char** argv) {
 string hello("Hello, World!");
 cout << hello << endl;
 return EXIT_SUCCESS;
}

helloworld2.cc

using namespace std;

Let’s Refine It a Bit

Here we are instantiating a std::string object on the stack (an ordinary local variable)

● Passing the C string "Hello, World!" to its constructor method

● hello is deallocated (and its destructor invoked) when main returns
38

#include <iostream> // for cout, endl
#include <cstdlib> // for EXIT_SUCCESS
#include <string> // for string

using namespace std;

int main(int argc, char** argv) {
 string hello("Hello, World!");
 cout << hello << endl;
 return EXIT_SUCCESS;
}

helloworld2.cc

Let’s Refine It a Bit

The C++ string library also overloads the << operator
● Defines a function (not an object method) that is invoked when the LHS is ostream

and the RHS is std::string
○ http://www.cplusplus.com/reference/string/string/operator<</ 39

#include <iostream> // for cout, endl
#include <cstdlib> // for EXIT_SUCCESS
#include <string> // for string

using namespace std;

int main(int argc, char** argv) {
 string hello("Hello, World!");
 cout << hello << endl;
 return EXIT_SUCCESS;
}

helloworld2.cc

http://www.cplusplus.com/reference/string/string/operator%3c%3c/

String Concatenation

The string class overloads the “+” operator

● Creates and returns a new string that is the concatenation of the LHS and RHS
40

#include <iostream> // for cout, endl
#include <cstdlib> // for EXIT_SUCCESS
#include <string> // for string

using namespace std;

int main(int argc, char** argv) {
 string hello("Hello");
 hello = hello + ", World!";
 cout << hello << endl;
 return EXIT_SUCCESS;
}

concat.cc

String Assignment

The string class overloads the “=” operator

● Copies the RHS and replaces the stringʼs contents with it
41

#include <iostream> // for cout, endl
#include <cstdlib> // for EXIT_SUCCESS
#include <string> // for string

using namespace std;

int main(int argc, char** argv) {
 string hello("Hello");
 hello = hello + ", World!";
 cout << hello << endl;
 return EXIT_SUCCESS;
}

concat.cc

String Manipulation

This statement is complex!
● First “+” creates a string that is the concatenation of helloʼs current contents and

", World!"

● Then “=” creates a copy of the concatenation to store in hello
● Without the syntactic sugar:

○ hello.operator=(hello.operator+(", World!"));
42

int main(int argc, char** argv) {
 string hello("Hello");
 hello = hello + ", World!";
 cout << hello << endl;
 return EXIT_SUCCESS;
}

concat.cc

hello.operator=(hello.operator+(", World!"));

Operators are just member functions

C and C++

C is (roughly) a subset of C++
● You can still use printf – but bad style in ordinary C++ code

○ E.g Use std::cerr instead of frpintf(stderr, …)
● Can mix C and C++ idioms if needed to work with existing code, but avoid mixing if

you can
○ Use C++(17)

#include <cstdio> // for printf
#include <cstdlib> // for EXIT_SUCCESS

int main(int argc, char** argv) {
 printf("Hello from C!\n");
 return EXIT_SUCCESS;
}

helloworld3.cc

43

Reading

std::cin is an object instance of class istream
● Supports the >> operator for “extraction”

○ Can be used in conditionals ! (std::cin>>num) is true if successful
● Has a getline() method and methods to detect and clear errors 44

#include <iostream> // for cout, endl
#include <cstdlib> // for EXIT_SUCCESS

using namespace std;

int main(int argc, char** argv) {
 int num;
 cout << "Type a number: ";
 cin >> num;
 cout << "You typed: " << num << endl;
 return EXIT_SUCCESS;
}

echonum.cc

C++ References

Review: Pointer
A pointer is a variable containing an address
● Modifying the pointer doesnʼt modify what it points to, but you can access/modify

what it points to by dereferencing
● These work the same in C and C++

46

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int* z = &x;
 *z += 1;
 x += 1;
 z = &y;
 *z += 1;

 return EXIT_SUCCESS;
}

pointer.cc

x 5

y 10

z

Note: Arrow points
to next instruction.

Review: Pointer
A pointer is a variable containing an address
● Modifying the pointer doesnʼt modify what it points to, but you can access/modify

what it points to by dereferencing
● These work the same in C and C++

47

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int* z = &x;
 *z += 1;
 x += 1;
 z = &y;
 *z += 1;

 return EXIT_SUCCESS;
}

pointer.cc

x 5

y 10

z 0x7fff…a4

Review: Pointer
A pointer is a variable containing an address
● Modifying the pointer doesnʼt modify what it points to, but you can access/modify

what it points to by dereferencing
● These work the same in C and C++

48

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int* z = &x;
 *z += 1; // sets x to 6
 x += 1;
 z = &y;
 *z += 1;

 return EXIT_SUCCESS;
}

pointer.cc

x 6

y 10

z 0x7fff…a4

Review: Pointer
A pointer is a variable containing an address
● Modifying the pointer doesnʼt modify what it points to, but you can access/modify

what it points to by dereferencing
● These work the same in C and C++

49

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int* z = &x;
 *z += 1; // sets x to 6
 x += 1; // sets x (and *z) to 7
 z = &y;
 *z += 1;

 return EXIT_SUCCESS;
}

pointer.cc

x 7

y 10

z 0x7fff…a4

Review: Pointer
A pointer is a variable containing an address
● Modifying the pointer doesnʼt modify what it points to, but you can access/modify

what it points to by dereferencing
● These work the same in C and C++

50

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int* z = &x;
 *z += 1; // sets x to 6
 x += 1; // sets x (and *z) to 7
 z = &y;
 *z += 1;

 return EXIT_SUCCESS;
}

pointer.cc

x 7

y 10

z 0x7fff…a0

Review: Pointer
A pointer is a variable containing an address
● Modifying the pointer doesnʼt modify what it points to, but you can access/modify

what it points to by dereferencing
● These work the same in C and C++

51

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int* z = &x;
 *z += 1; // sets x to 6
 x += 1; // sets x (and *z) to 7
 z = &y;
 *z += 1;

 return EXIT_SUCCESS;
}

pointer.cc

x 7

y 11

z 0x7fff…a0

References
A reference is an alias for another variable
● Alias: another name that is bound to the aliased variable

○ Mutating a reference is mutating the aliased variable
● Introduced in C++ as part of the language

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int& z = x;
 z += 1;
 x += 1;
 z = y;
 z += 1;

 return EXIT_SUCCESS;
}

reference.cc

x 5

y 10

52

When we use '&' in a type declaration, it
is a reference.

&var is still “address of var”

References
A reference is an alias for another variable
● Alias: another name that is bound to the aliased variable

○ Mutating a reference is mutating the aliased variable
● Introduced in C++ as part of the language

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int& z = x; // binds the name "z" to x
 z += 1;
 x += 1;
 z = y;
 z += 1;

 return EXIT_SUCCESS;
}

reference.cc

x, z 5

y 10

53

References
A reference is an alias for another variable
● Alias: another name that is bound to the aliased variable

○ Mutating a reference is mutating the aliased variable
● Introduced in C++ as part of the language

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int& z = x; // binds the name "z" to x
 z += 1; // sets z (and x) to 6
 x += 1;
 z = y;
 z += 1;

 return EXIT_SUCCESS;
}

reference.cc

x, z 6

y 10

54

References
A reference is an alias for another variable
● Alias: another name that is bound to the aliased variable

○ Mutating a reference is mutating the aliased variable
● Introduced in C++ as part of the language

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int& z = x; // binds the name "z" to x
 z += 1; // sets z (and x) to 6
 x += 1; // sets x (and z) to 7
 z = y;
 z += 1;

 return EXIT_SUCCESS;
}

reference.cc

x, z 7

y 10

55

References
A reference is an alias for another variable
● Alias: another name that is bound to the aliased variable

○ Mutating a reference is mutating the aliased variable
● Introduced in C++ as part of the language

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int& z = x; // binds the name "z" to x
 z += 1; // sets z (and x) to 6
 x += 1; // sets x (and z) to 7
 z = y; Normal assignment
 z += 1;

 return EXIT_SUCCESS;
}

reference.cc

x, z 7

y 10

56

There is no way to rebind a
reference to refer to a different
object. Because there is no way
to rebind a reference,
references must be initialized.

References
A reference is an alias for another variable
● Alias: another name that is bound to the aliased variable

○ Mutating a reference is mutating the aliased variable
● Introduced in C++ as part of the language

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int& z = x; // binds the name "z" to x
 z += 1; // sets z (and x) to 6
 x += 1; // sets x (and z) to 7
 z = y; // sets z (and x) to the value of y
 z += 1;

 return EXIT_SUCCESS;
}

reference.cc

x, z 10

y 10

57

References
A reference is an alias for another variable
● Alias: another name that is bound to the aliased variable

○ Mutating a reference is mutating the aliased variable
● Introduced in C++ as part of the language

int main(int argc, char** argv) {
 int x = 5, y = 10;
 int& z = x; // binds the name "z" to x
 z += 1; // sets z (and x) to 6
 x += 1; // sets x (and z) to 7
 z = y; // sets z (and x) to the value of y
 z += 1; // sets z (and x) to 11

 return EXIT_SUCCESS;
}

reference.cc

x, z 11

y 10

58

Some Symbols Have Multiple Meanings
& and * are used as both an operator in an expression and as part of a declaration. The
context in which a symbol is used determines what the symbol means:

int i = 42;
int& r = i; // & follows a type and is part of a declaration; r is a reference
int* p; // * follows a type and is part of a declaration; p is a pointer
p = &i; // & is used in an expression as the address-of operator
*p = i; // * is used in an expression as the dereference operator
int& r2 = *p; // & is part of the declaration; * is the dereference operator

In declarations, & and * are used to form compound types. In expressions, these same
symbols are used to denote an operator.

Pass-By-Reference
C++ allows you to use real pass-by-reference
● Client passes in an argument with normal syntax

○ Function uses reference parameters with normal syntax
○ Modifying a reference parameter modifies the callerʼs argument!

void swap(int& x, int& y) {
 int tmp = x;
 x = y;
 y = tmp;
}

int main(int argc, char** argv) {
 int a = 5, b = 10;
 swap(a, b);
 cout << "a: " << a << "; b: " << b << endl;
 return EXIT_SUCCESS;
}

passbyreference.cc

(main) a 5

(main) b 10

60

Pass-By-Reference
C++ allows you to use real pass-by-reference
● Client passes in an argument with normal syntax

○ Function uses reference parameters with normal syntax
○ Modifying a reference parameter modifies the callerʼs argument!

void swap(int& x, int& y) {
 int tmp = x;
 x = y;
 y = tmp;
}

int main(int argc, char** argv) {
 int a = 5, b = 10;
 swap(a, b);
 cout << "a: " << a << "; b: " << b << endl;
 return EXIT_SUCCESS;
}

passbyreference.cc

(main) a 5

(main) b 10

61

Parameters are attached to variables
provided by caller

Pass-By-Reference
C++ allows you to use real pass-by-reference
● Client passes in an argument with normal syntax

○ Function uses reference parameters with normal syntax
○ Modifying a reference parameter modifies the callerʼs argument!

void swap(int& x, int& y) {
 int tmp = x;
 x = y;
 y = tmp;
}

int main(int argc, char** argv) {
 int a = 5, b = 10;
 swap(a, b);
 cout << "a: " << a << "; b: " << b << endl;
 return EXIT_SUCCESS;
}

passbyreference.cc

(main) a
(swap) x 5

(main) b
(swap) y 10

62

(swap) tmp

Pass-By-Reference
C++ allows you to use real pass-by-reference
● Client passes in an argument with normal syntax

○ Function uses reference parameters with normal syntax
○ Modifying a reference parameter modifies the callerʼs argument!

void swap(int& x, int& y) {
 int tmp = x;
 x = y;
 y = tmp;
}

int main(int argc, char** argv) {
 int a = 5, b = 10;
 swap(a, b);
 cout << "a: " << a << "; b: " << b << endl;
 return EXIT_SUCCESS;
}

passbyreference.cc

(main) a
(swap) x 5

(main) b
(swap) y 10

63

(swap) tmp 5

Pass-By-Reference
C++ allows you to use real pass-by-reference
● Client passes in an argument with normal syntax

○ Function uses reference parameters with normal syntax
○ Modifying a reference parameter modifies the callerʼs argument!

void swap(int& x, int& y) {
 int tmp = x;
 x = y;
 y = tmp;
}

int main(int argc, char** argv) {
 int a = 5, b = 10;
 swap(a, b);
 cout << "a: " << a << "; b: " << b << endl;
 return EXIT_SUCCESS;
}

passbyreference.cc

(main) a
(swap) x 10

(main) b
(swap) y 10

64

(swap) tmp 5

Pass-By-Reference
C++ allows you to use real pass-by-reference
● Client passes in an argument with normal syntax

○ Function uses reference parameters with normal syntax
○ Modifying a reference parameter modifies the callerʼs argument!

void swap(int& x, int& y) {
 int tmp = x;
 x = y;
 y = tmp;
}

int main(int argc, char** argv) {
 int a = 5, b = 10;
 swap(a, b);
 cout << "a: " << a << "; b: " << b << endl;
 return EXIT_SUCCESS;
}

passbyreference.cc

(main) a
(swap) x 10

(main) b
(swap) y 5

65

(swap) tmp 5

Pass-By-Reference
C++ allows you to use real pass-by-reference
● Client passes in an argument with normal syntax

○ Function uses reference parameters with normal syntax
○ Modifying a reference parameter modifies the callerʼs argument!

void swap(int& x, int& y) {
 int tmp = x;
 x = y;
 y = tmp;
}

int main(int argc, char** argv) {
 int a = 5, b = 10;
 swap(a, b);
 cout << "a: " << a << "; b: " << b << endl;
 return EXIT_SUCCESS;
}

passbyreference.cc

(main) a 10

(main) b 5

66

Best Practices
Programmers accustomed to programming in C often use pointer parameters to
access objects outside a function. In C++, programmers generally use reference
parameters instead.

