What do you think?

Discuss!

You’ve been asked to improve
some code before itis released as a
deliverable. Your boss wants it to
be reliable and low-footprint.

What aspects of the code do you
examine?

What tools do you have at your
disposal?

CSE 374: Lecture 20

Profiling Code

Beyond Buglessness

e Numerically reliable
e Memory safe

e Memory efficient

e Operations efficient

Benchmark:

Compare performance against
a standard measure

Compare to industry standards

Compare to previous
performance

Particle Swarm Optimization

Particle swarm optimization (PSO) is a population based stochastic
optimization technique developed by Dr. Eberhart and Dr. Kennedy in 1995,
inspired by social behavior of bird flocking or fish schooling.

o Akin to genetic algorithms...
Used to find the global optimum of potentially non-convex functions.

o Optimize control settings (intelligent control)

o Fit data to functions (machine learning)

o Find low energy solutions

m Low energy often matches the natural solution (protein structures)

Function optimization is usually an iterative algorithm

o Codinginefficiencies add up.

http://www.engr.iupui.edu/~eberhart
http://www.particleswarm.net/JK/

2500 <

2000 ~

1500 <

1000 =~

500 <

float* optimize (float(*obj) (float*), float* mins, float* maxs) ;

Code
int main() {
float* opt;

printf ("Starting PSO on Sphere\n");
opt = optimize (spherefunc, mins, maxs);

return O;

// spherefunc min at 0,0
float spherefunc(float* pos) ({
return pos[0] *pos[0] + pos[l]*pos[l];

float* optimize (float(*obj) (float*), float* mins,

Code

int main() {

float* opt;

" Review Opportunity:
printf ("Start PP Y
opt = optimiz

float (*obj) (float¥*)

return O;

} —-—- function pointer from

// spherefunc m £loat* to float

float spherefun
return pos|[0]*pos[0] + pos[l]*pos[1l];

float* maxs) ;

Not to be confused with code or algorithm
optimization
Minimize memory usage, computation time, or both

e Examination of behavior of a running program

e Tally of memory allocation
e Record of run time, including breakdown of where the time is spent.

Can use a variety of techniques (hardware interrupts, code tooling, performance counters)
Trace: stream of recorded events, proportional to execution time
Profile: statistical summary of event, proportional to code size

Basics

Write code

Run test cases (benchmarks)
Python clint.py
Valgrind

New hot benchmarks?:

= e

Mnist, imagenet

Mmlu, truthfulQA

Benchmarking v. Profiling

Benchmarking collects statistics on specific sample problems
(Ex. objective functions are standard benchmark functions for optimization)

=> Number of iterations until convergence
> Likelihood of finding solution

=> Runtime

—> Memory usage

Benchmarking can be very useful for measuring performance on subsequent deliveries

Profiling Tools

e Investigate run-time behavior of code at different points
e Checks time taken by instructions from machine language to high-level

functions

o actual time
o number of calls to the instruction

e Flat profiler - computes average call times, does not break down calls
e Call graph profiler - shows chains based on called functions

Insertion v. Sampling profilers

Insertion:

Place specific profiling code in
program

Can be used on various platforms
Accurate

Requires recompilation and
relinking

Will affect performance

Sampling:

Monitoring or snap-shotting at
specific intervals

No modification of code

Less accurate - limited by
sampling rate

Very small methods often missed
Not great for memory

$Sgprof

Gnu profiling tool (insertion)
Compile with Sgcc -pgflag
$./mainopt

Creates gmon.out

Run profiler with
$gprof ./mainopt

Each sample counts as 0.01 seconds.

% cumulative self

self total

time seconds seconds calls ms/call ms/call name
64.87 0.22 0.22 2040000 0.00 0.00 update_vel
14.74 0.27 0.05 2008462 0.00 0.00 rastrigin

0.31 0.04 2040000 0.00 0.00 update_pos

11.79

5.90
2.95
0.00
0.00
0.00

0.33
0.34
0.34
0.34
0.34

0.02
0.01
0.00
0.00
0.00

102 0.20 3.34 optimize
51000 0.00 0.00 update_gb
20132 0.00 0.00 rosenbrock
20131 0.00 0.00 spherefunc

102 0.00 0.00 initialize_opt

$valgrind --tool=callgrind

Svalgrind --tool=callgrind ./mainopt

Creates callgrind.out.X
You can read output file

But its tricky; try:
Skcachegrind callgrind.out.X

(Must install cachegrind:

Ssudo yum install kcachegrind
Or, on Ubuntu:

Ssudo apt-get install kcacehgrind

callgrind.out.59708 [./mainopt] Do 53
Fle View Go settings Help
Open Back ~ Forward ~ Up v | Relative | Cycle Detection| Relative to Parent Shorten Templates | Instruction Fetch -
Flat Profile ® update_vel
search: (No Grouping) v | | Types | Callers | All Callers | Callee Map | Source Code
incl. self called Function
W 10000 0.00 (0) = 0x000000000¢
90.99 0.00 3 _dl_runtime_r
99.99 0.00 1 B 0x000000000¢
99.99 0.0 (0) m (below main)
. 9999 000 1 5 main
- 9996 277 102 M optimize
W 5560 5.49 2040000 & update_pos
W 4521 5.5 2008 403 M rastrigin
® 34.87 §23.01 4016 805 & __cos_avx
¥ 17.80 1528176319 M rand
I 1629 6.44 8176 320 M random
) 1461 573 6179891 M mcount
' 9.881 9.88 8207940 o random_r Se==—————eeeoo
' 8881 8.88 6179802 M _mcountinte | ir Count callee
! 8651 8.65 665421 M _branred ¥17.77 8160 000 M rand (libc-2.17.50: rand.c)
176 164 4.82 2040 000 8 mcount (libc-2.17.50: _mcount.s)
153 152
137 136
020 0.05
017 017
010 010
009 0.04
007 002 20135 o spherefunc
005 001 102 M srandom_r
005 0.00 101 o srand
003 0.00 102 o vfprintf
003 0.00 101 o printf
003 000 1032 m_docos
0.03__0.03 1029 @ _dubcos Parts | Callees | Call Graph | All Callees ' Caller Map | Machine Code

callgrind.out.59708 [1] - Total Instruction Fetch Cost: 2 157 287 594

$valgrind --tool=callgrind

. . . Fle View Go Settings Help o -
Svalgrind --tool=callgrind ./mainopt oven | 5ok~ roreart < o~ | T TR retotve oo oo oo e
Flat Profile

Creates callgrind.out.X
You can read output file

]
0
‘l
L] 16.29

20 8 random

But its tricky; try:
$Skcachegrind callgrind.out.X ReVleW Opportunlty:

(Must install cachegrind:

$sudo yum install kcachegrind $SUdO yum install kcachegrind
Or, on Ubuntu:

Ssudo apt-get install kcacehgr What does sudo do?

What about yum install?

Observe

e Which methods are being called the most
o these may not necessarily be the "slowest" methods!
e Which methods are taking the most time relative to the

others

o common problems

inefficient unbuffered 1/0

poor choice of data structure

recursion call overhead

unnecessary re-computation of expensive
information, or unnecessary multiple I/O of same
data

$valgrind --tool-massif

Svalgrind --tool=massif

Creates massif.out.X
You can read output file

But its tricky; try:
$ms print massif.out.X

./mainopt

5]
POPODDDDD®®®®®

Number of snapshots: 62

Detailed snapshots:

[1, 8, 13, 17, 19, 32, 44 (peak), 58]

$valgrind -tool=-massif

https://valgrind.org/docs/manual/ms-manual.html

- Lots of options

- Givesinsightinto

- Where memory is allocated

- Whether what is allocated is de-allocated
- Usable memory + extra memory

https://valgrind.org/docs/manual/ms-manual.html

