
What do you think? Discuss!

Youʼve been asked to improve
some code before it is released as a
deliverable. Your boss wants it to
be reliable and low-footprint.

What aspects of the code do you
examine?
What tools do you have at your
disposal?

CSE 374: Lecture 20
Profiling Code

Beyond Buglessness

● Numerically reliable
● Memory safe
● Memory efficient
● Operations efficient

Benchmark:

Compare performance against
a standard measure

Compare to industry standards

Compare to previous
performance

Particle Swarm Optimization
● Particle swarm optimization (PSO) is a population based stochastic

optimization technique developed by Dr. Eberhart and Dr. Kennedy in 1995,
inspired by social behavior of bird flocking or fish schooling.
○ Akin to genetic algorithms…

● Used to find the global optimum of potentially non-convex functions.
○ Optimize control settings (intelligent control)
○ Fit data to functions (machine learning)
○ Find low energy solutions

■ Low energy often matches the natural solution (protein structures)
● Function optimization is usually an iterative algorithm

○ Coding inefficiencies add up.

http://www.engr.iupui.edu/~eberhart
http://www.particleswarm.net/JK/

Finding minima

Code

int main() {

 float* opt;
 …
 printf("Starting PSO on Sphere\n");
 opt = optimize(spherefunc, mins, maxs);
 …
 return 0;
}

// spherefunc min at 0,0
float spherefunc(float* pos) {
 return pos[0]*pos[0] + pos[1]*pos[1];
}

float* optimize (float(*obj)(float*), float* mins, float* maxs);

Code

int main() {

 float* opt;
 …
 printf("Starting PSO on Sphere\n");
 opt = optimize(spherefunc, mins, maxs);
 …
 return 0;
}

// spherefunc min at 0,0
float spherefunc(float* pos) {
 return pos[0]*pos[0] + pos[1]*pos[1];
}

float* optimize (float(*obj)(float*), float* mins, float* maxs);

Review Opportunity:

float(*obj)(float*)

 -- function pointer from
float* to float

Not to be confused with code or algorithm
optimization
Minimize memory usage, computation time, or both

● Examination of behavior of a running program
● Tally of memory allocation
● Record of run time, including breakdown of where the time is spent.

Can use a variety of techniques (hardware interrupts, code tooling, performance counters)
Trace: stream of recorded events, proportional to execution time
Profile: statistical summary of event, proportional to code size

Basics
1. Write code
2. Run test cases (benchmarks)
3. Python clint.py
4. Valgrind

New hot benchmarks?:

Mnist, imagenet

Mmlu, truthfulQA

Benchmarking v. Profiling
Benchmarking collects statistics on specific sample problems

(Ex. objective functions are standard benchmark functions for optimization)

➔ Number of iterations until convergence
➔ Likelihood of finding solution
➔ Run time
➔ Memory usage

Benchmarking can be very useful for measuring performance on subsequent deliveries

Profiling Tools
● Investigate run-time behavior of code at different points
● Checks time taken by instructions from machine language to high-level

functions
○ actual time
○ number of calls to the instruction

● Flat profiler - computes average call times, does not break down calls
● Call graph profiler - shows chains based on called functions

Insertion v. Sampling profilers
Insertion:

● Place specific profiling code in
program

● Can be used on various platforms
● Accurate
● Requires recompilation and

relinking
● Will affect performance

Sampling:

● Monitoring or snap-shotting at
specific intervals

● No modification of code
● Less accurate - limited by

sampling rate
● Very small methods often missed
● Not great for memory

$gprof
Gnu profiling tool (insertion)

Compile with $gcc -pg flag

$./mainopt

Creates gmon.out

Run profiler with
$gprof ./mainopt

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 64.87 0.22 0.22 2040000 0.00 0.00 update_vel
 14.74 0.27 0.05 2008462 0.00 0.00 rastrigin
 11.79 0.31 0.04 2040000 0.00 0.00 update_pos
 5.90 0.33 0.02 102 0.20 3.34 optimize
 2.95 0.34 0.01 51000 0.00 0.00 update_gb
 0.00 0.34 0.00 20132 0.00 0.00 rosenbrock
 0.00 0.34 0.00 20131 0.00 0.00 spherefunc
 0.00 0.34 0.00 102 0.00 0.00 initialize_opt

$valgrind --tool=callgrind
$valgrind --tool=callgrind ./mainopt

Creates callgrind.out.X
You can read output file

But its tricky; try:
$kcachegrind callgrind.out.X

(Must install cachegrind:
$sudo yum install kcachegrind
Or, on Ubuntu:
$sudo apt-get install kcacehgrind

$valgrind --tool=callgrind
$valgrind --tool=callgrind ./mainopt

Creates callgrind.out.X
You can read output file

But its tricky; try:
$kcachegrind callgrind.out.X

(Must install cachegrind:
$sudo yum install kcachegrind
Or, on Ubuntu:
$sudo apt-get install kcacehgrind

Review Opportunity:

$sudo yum install kcachegrind

What does sudo do?
What about yum install?

Observe
● Which methods are being called the most

○ these may not necessarily be the "slowest" methods!
● Which methods are taking the most time relative to the

others
○ common problems

■ inefficient unbuffered I/O
■ poor choice of data structure
■ recursion call overhead
■ unnecessary re-computation of expensive

information, or unnecessary multiple I/O of same
data

$valgrind --tool=massif
$valgrind --tool=massif ./mainopt

Creates massif.out.X
You can read output file

But its tricky; try:
$ms_print massif.out.X

$valgrind –tool=massif
https://valgrind.org/docs/manual/ms-manual.html

- Lots of options
- Gives insight into
- Where memory is allocated
- Whether what is allocated is de-allocated
- Usable memory + extra memory

https://valgrind.org/docs/manual/ms-manual.html

