
What do you think? The due date for a homework is soon,
but you found a piece of code on-line
that you think you can hand in and get
credit.

● What are the short term benefits of
just copying that code?

● What are the long term benefits?
● What are the short term

drawbacks?
● What are the long term drawback?

CSE 374 Lecture 2

TODAY

Computer Model

What is Linux?

What is the Shell?

Accessing Cancun

Getting started with
Bash

Computer Model

OS: Linux

Interface: shell (bash)

Process Process

Process Process
Users (many)

❖ One OS (CentOs)
controls the
computer.

❖ One filesystem
stores data.

❖ Many processes are
run. (A program
runs one or many
processes.)

❖ A shell is one
process that allows
for command line
interface.

❖ Many users

What is the OS?
● Memory Management
● Processor Management
● Device Management
● File Management
● Security
● Control over system

performance
● Job accounting
● Error detecting aids
● Coordination between other

software and users

What do you think?
What operating systems can you name?
Which ones do you use?

https://en.wikipedia.org/wiki/Usage_share_of_operating_systems

Most common operating
systems:

● Android (linux)
● Windows
● iOS
● maxOS
● Desktop linux

Linux Model Linux -
Portable; multi-user

Includes

● Hardware layer (drivers, etc.)
● Kernel (does all the hardware

interaction)
● Shell (provides user friendly

interface to kernel)
● Processers (various programs)
● Users - multiple users run

processes

http://www.tldp.org/LDP/intro-linux/html/chap_01.html

http://www.tldp.org/LDP/intro-linux/html/chap_01.html

Linux & Shells
Text is efficient - typing is fast, and there
arenʼt big image objects to pass around

Scripting makes it easy to automate text
based interfaces

Linux does have a graphical interface

Windows and MacOS do have shell
interfaces

Most power users use BOTH

You could use any distribution of
Linux that is up-to-date. Using CSE
machines ensures consistency.

(What a distribution? Something like
a ʻflavor ,̓ or a branded
implementations. Distributions vary
somewhat.)

There are also ʻflavorsʼ of shells. We
will use bash for this course.

Getting Started with Linux

Log in to ʻcancunʼ
(CSE 374ʼs ʻflavorsʼ of Linux)

https://courses.cs.washington.edu/cour
ses/cse374/24au/resources/linux.html

Log-in and get a ʻshellʼ

● Shell - text based
interface

● Specifically ʻbashʼ

Everyone should have an account on cancun that
uses your united log-in - send email to cse374-staff if
you can not access yours.

Processes & the Shell
Shell essentially runs programs, or
processes. Shell *is* a process, and has a
state.

Usually launch a process, and return to
shell when done.

Each process has own memory stream and
I/O

Stdin (keyboard), stdout (console), stderr

Many processes have options

ʻ&ʼ runs process in the background

ʻfg ,̓ ʻbg ,̓ top, kill

Step through a script with built-in ʻsourceʼ

Can redirect input and output (ʻ< ,̓ ʻ>ʼ)

"On a UNIX system, everything is a file;
if something is not a file, it is a
process."

File Systems
(Processes interact with data, stored in a file system)

❏ File systems are trees
❏ (or directed acyclic graphs)
❏ A file (or directory) is specified by

its path from the top (ʻ/ʼ)
❏ Can be specified absolutely or
❏ Relatively (from current location)

❏ This directory .̒/ʼ
❏ One directory up .̒./ʼ

❏ You have access to your ʻhomeʼ
directory (ʻ~ʼ)

More: https://refspecs.linuxfoundation.org/FHS_3.0/fhs/index.html
Also true on Windows, btw, although the structure and some notation
is different.
Demo - whoami, pwd, ls, mkdir, cd, cp, mv, rm, less, more
http://www.tldp.org/LDP/intro-linux/html/sect_03_01.html

https://refspecs.linuxfoundation.org/FHS_3.0/fhs/index.html
http://www.tldp.org/LDP/intro-linux/html/sect_03_01.html

Getting Help
Most commands: ʻman lsʼ
Also “--help”

Look for keyword: ʻman -kʼ

http://www.tldp.org/LDP/intro-linux/html/sect_02_03.html

http://www.tldp.org/LDP/intro-linux/html/sect_02_03.html

Bash (shell) Language

● Bash acts as a language interpreter
○ Commands are subroutines with arguments
○ Bash interprets the arguments & calls

subroutine
○ Bash also has its own variables and logic

ProcessInput Output

BASH applies its own processing
to the I/O text - ʻglobbingʼ

Special Characters
● Directory Shortcuts

○ ~uname or ~
○ ./ or ../

● Wildcards - Globbing
○ 0 or more chars: *
○ Exactly 1 char: ?
○ Specified chars: [a-f]

History, or ʻ!ʼ

Special Characters

! > < & | * ~ [] “ ʻ ` $ /

 \ is escape
character

“string”

ʻstringʼ

What do they all
mean?

Would substitute
things like $VAR

Suppresses
substitutions

ProcessStdIn

StdErr

StdOut

Processes have two
OUTPUT
destinations, the
default being StdOut
and StdErr. You can
think of these as two
potential files to
which a processes
can write.

Processes all
can take INPUT
from one
source, the
default being
StdIn.

Process
Userʼs
file

Error
file

Output
file

You can also write to
different files instead of
StdErr or StdOut. The ʻ>ʼ
symbol means to put in an
new file, while ʻ>>ʼ means
to append to the end of a
file. The ʻ2ʼ specifies that
you want iostream ʻ2 ,̓ or
the error stream.

But, instead of
using StdIn you
can use any file,
and ʻredirectʼ it in
by using the ʻ<ʼ
symbol (pointing
towards process).

<

>>

2>

Shell Behavior

All redirection & string expansion or substitutions
are done by the shell, before the command.

Command only sees resulting I/O streams.

