
What do you think? Discuss!

What considerations should be 
made while choosing numerical 
data types?

What are the advantages of 
narrower types?

What are the advantages of wider 
types?



CSE 374: Lecture 19
Memory Management



Allocating array memory
An array IS a pointer

A String is an array of char, 
terminating with \0

strsize returns length of 
string, minus the final \0 
character

Allocate enough space for 
(strsize+1) chars

// copy original string 

int strsize = strlen(s)+1;
// result = (char *)malloc(strsize);
result =(char*)malloc(strsize*sizeof(char));
printf ("sizeof char: %d \n", sizeof(char));
strncpy(result, s, strsize);

// from final_reverse.c, lect. 11



Using pointer manipulation for good
void fill_mem (void* ptr, size) {

  uintptr_t memadd = (uintptr_t) ptr;
  for (int i=0; i<16 && i <size; i++) {

    *((unsigned char*)(memadd+1)) = 0xFE;

  }
}



Buffer Overflow

What is buffer overflow?

ʻGetsʼ doesnʼt check for buffer 
size; if the string is more than 
8 characters, it will write onto 
the memory at the end of buf.

Why is that so bad?  (see the 
stack!)

void echo() {
      char buf[8];
      gets(buf);
      puts(buf);
}



The stack
Stack stores active functions & local variables
Each function gets a frame, moving down in memory
Last frame is completed, deleted
     then the next most recent frame.
    (Last in-first out)
Each function call creates a frame
    Containing:

Arguments, return address, 
Pointer-to-last-frame, 
local variables 

<- stack



Linux Stack Frame
Stack stores active functions & local variables. 

Each function call creates a frame:

● Callerʼs Stack Frame
● Current/ Callee Stack Frame

○ Return address: the next instruction after the 
function call in the program
■ This is how the callee returns to the caller!

○ Local variables
(if they canʼt be kept in CPU registers)

This general idea is also applicable to Windows and macOS

Return Addr

Local
Variables

Caller
Frame

Lower Addresses

Higher Addresses

Callee
Frame



Buffer Overflow
C does not check array bounds

● Many Unix/Linux/C functions donʼt check argument sizes

● Allows overflowing (writing past the end) of buffers (arrays)

“Buffer Overflow” = Writing past the end of an array

Characteristics of the traditional Linux memory layout provide opportunities for 
malicious programs

● Stack grows “backwards” in memory

● Data and instructions both stored in the same memory



Example
#include <stdio.h>
void echo();
int main() {
    printf("Enter a string: ");
    echo();
    return 0;
}
void echo() {
    char buf[8];
    gets(buf);
    printf("%s", buf);
} gets()  documentation

Thanks to A. McKinney

https://cplusplus.com/reference/cstdio/gets/


Example
Stack grows down towards lower addresses

Buffer grows up towards higher addresses

If we write past the end of the array, we overwrite data on 
the stack!

Lower Addresses
buf[0]

buf[7]

'\0'
'o'
'l'
'l'
'e'
'h'

00
00
00
00
00
40
dd
bf

Return
Address

Higher Addresses

 Enter input: hello

No overflow! ☺



Example 00
00
00
00
00
40
dd
bf

Lower Addresses

Higher Addresses

buf[0]

buf[7]

Return
Address

Stack grows down towards lower addresses

Buffer grows up towards higher addresses

If we write past the end of the array, we overwrite data on 
the stack!

 Enter input: helloabcdef 



Example 00
00
00
00

'\0'
'f'
'e'
'd'

Lower Addresses

Higher Addresses

buf[0]

buf[7] 'c'
'b'
'a'
'o'
'l'
'l'
'e'
'h'

Return
Address

 Enter input: helloabcdef 

Buffer overflow! ☹

If we write past the end of the array, we overwrite data on 
the stack!
● The data overwritten can be quite arbitrary. If the 

data overwritten is stack frame “bookkeeping” data 
or something like a function pointer, things could go 
bad.



Buffer Overflow in a Nutshell
Buffer overflows on the stack can overwrite “interesting” data

● Attackers just choose the right inputs

Simplest form (sometimes called “stack smashing”)

● Unchecked length on string input into bounded array causes overwriting of stack 
data

● Return-oriented programming

● Try to change the return address of the current procedure

Why is this a big deal?

● It was the #1 technical cause of security vulnerabilities

○ #1 overall cause is social engineering / user ignorance
13

https://en.wikipedia.org/wiki/Return-oriented_programming


Exploits Based on Buffer Overflows
Examples across the decades

● Original “Internet worm” (aka Morris Worm) (1988)

○ Later became one of the founders of YCombinator.

● Heartbleed (2014, affected 17% of servers)

○ Similar issue in Cloudbleed (2017)

● Hacking embedded devices

○ Cars, Smart homes, Planes

14

Buffer overflow bugs can allow attackers to 
execute arbitrary code on victim machines

https://en.wikipedia.org/wiki/Morris_worm


Example: Heartbleed
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Example: Heartbleed
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Example: Heartbleed

17



Heartbleed (2014)
Buffer over-read in OpenSSL
● Open source security library
● Bug in a small range of versions

“Heartbeat” packet (part of Heartbeat ext.)
● Specifies length of message
● Server echoes it back
● Library just “trusted” this length
● Allowed attackers to read contents of 

memory anywhere they wanted

Est. 17% of Internet affected

18

By FenixFeather - Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=32276981



UW CSE research from 2010 demonstrated wirelessly hacking a car using buffer 
overflow

Overwrote the onboard control systemʼs code

● Disable brakes

● Unlock doors

● Turn engine on/off

Hacking Cars

19

http://www.autosec.org/pubs/cars-oakland2010.pdf


Hacking DNA Sequencing Tech
● Potential for malicious code to be encoded in DNA!
● Attacker can gain control of DNA sequencing machine when malicious DNA is read
● Ney et al. (2017)

○ https://dnasec.cs.washington.edu/

20

https://dnasec.cs.washington.edu/


Change return to last frame
void bufferplay (int a, int b, int c) {
  char buffer1[5];
  uintptr_t ret;  // holds an address

  // calculate the return address 
  // change to be address of return
  ret = (uintptr_t) buffer1 + 0; 

  // treat that number like a pointer,
  // and change the value in it
  *((uintptr_t*)ret) += 0; 
}

int main(int argc, char** argv) {
  int x = 0;
  bufferplay (1,2,3);
  x = 1;  // want to skip this line
}

Use GDB: 

break bufferplay       
x buffer1        // prints the location of buffer1
info frame      // Look at "rip" to get the
     // location of the return address
print <rip-location> - <buffer1-location>
      // prints distance from buffer1 to return
     //  address.

disassemble main  // shows the machine      
     // code  and how many bytes each
     // instruction takes up.



Dealing with Buffer Overflow Attacks
Avoid vulnerabilities in the first place
● Use library functions that limit string lengths

○ fgets instead of gets
○ strncpy instead of strcpy

● Use a language that makes them impossible

System-level protections
● Make stack non-executable
● Have compiler insert “stack canaries” (just like a networking header checksum)
● Put a special value between buffer and return address
● Check for corruption before leaving function
● Randomized Stack offsets



Using Memory 
Wisely



An Example Memory Hierarchy
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registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,  
slower, 
cheaper 
per byte

remote secondary storage
(distributed file systems, web servers)

off-chip L2
cache (SRAM)

Smaller,
faster,
costlier
per byte

<1 ns

1 ns

5-10 ns

100 ns

150,000 ns

10,000,000 ns
(10 ms)

1-150 ms

SSD

Disk

5-10 s

1-2 min

15-30 min

31 days

66 months = 5.5 years

1 - 15 years



An Example Memory Hierarchy
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registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,  
slower, 
cheaper 
per byte

remote secondary storage
(distributed file systems, web servers)

Local disks hold files 
retrieved from disks on 
remote network servers

Main memory holds disk blocks 
retrieved from local disks

off-chip L2
cache (SRAM)

L1 cache holds cache lines retrieved from L2 cache

CPU registers hold words retrieved from L1 cache

L2 cache holds cache lines retrieved 
from main memory

Smaller,
faster,
costlier
per byte



Why haven’t we seen caches before?
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registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,  
slower, 
cheaper 
per byte

remote secondary storage
(distributed file systems, web servers)

off-chip L2
cache (SRAM)

explicitly program-controlled (e.g. 
refer to exactly %rax, %rbx in 
assembly language)

Smaller,
faster,
costlier
per byte

program sees “memory”;
hardware manages caching

transparently

Because theyʼre 
designed to be 
architecturally 
transparent!



How does execution time grow with SIZE?
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int array[SIZE];  
// initialize array somewhere else
int sum = 0;  
for (int i = 0; i < 200000; i++)

for (int j = 0; j < SIZE; j++)
sum += array[j];

SIZE

Ex
ec

ut
io

n 
Ti

m
e

Plot:



Actual Data

28SIZE
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m
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Incorrect Assumptions 
Accessing memory is a quick and constant-time operation

Sometimes accessing memory is cheaper and easier than at other times

Sometimes accessing memory is very slow

Lies!



Processor-Memory Gap

Processor-Memory
Performance Gap
(grows 50%/year)

1989 first Intel CPU with cache on chip
1998 Pentium III has two cache levels on chip

“Moore’s Law”
µProc

55%/year
(2X/1.5yr)

DRAM
7%/year

(2X/10yrs)



Problem:  Processor-Memory Bottleneck

Main 
Memory

CPU Reg

Processor performance
doubled about 
every 18 months Bandwidth evolved much slower

Core 2 Duo:
Can process at least
256 Bytes/cycle

Core 2 Duo:
Bandwidth
2 Bytes/cycle
Latency
100-200 cycles (30-60ns)

Problem: lots of waiting on memory
cycle: single machine step (fixed-time)



Problem:  Processor-Memory Bottleneck

Main 
Memory

CPU Reg

Core 2 Duo:
Bandwidth
2 Bytes/cycle
Latency
100-200 cycles (30-60ns)

Solution: caches

Cache

cycle: single machine step (fixed-time)

Processor performance
doubled about 
every 18 months

Core 2 Duo:
Can process at least
256 Bytes/cycle

Bandwidth evolved much slower



Cache 💰
Pronunciation:  “cash”
● We abbreviate this as “$”

English:  A hidden storage space 
● for provisions, weapons, and/or treasures

Computer:  Memory with short access time used for the storage of frequently or recently 
used data
● More generally:  Used to optimize data transfers between any system elements with 

different characteristics (network interface cache, I/O cache, etc.)



General Cache Mechanics

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory

Data is copied in block-sized 
transfer units

• Smaller, faster, more 
expensive memory

• Caches a subset of the blocks

• Larger, slower, cheaper 
memory.

• Viewed as partitioned into 
“blocks”



General Cache Concepts:  Hit

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:
Hit!

Data is returned to CPU



General Cache Concepts:  Miss

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memoryRequest: 12

12

12

12

Block b is stored in cache
• Placement policy:
determines where b goes

• Replacement policy:
determines which block
gets evicted (victim)

Data is returned to CPU



Why Caches Work
Locality: Programs tend to use data and instructions with addresses near or equal to 
those they have used recently
● Temporal locality:  

○ Recently referenced items are likely 
to be referenced again in the near future

● Spatial locality:  
○ Items with nearby addresses tend 

to be referenced close together in time

Analogy:  took a bite of sandwich, probably going to take a bite out of other half of 
sandwich (as opposed to a new sandwich)

How do caches take advantage of this?

block

block



Example:  Any Locality?

● Temporal: sum referenced in each iteration

● Spatial: consecutive elements of array a[] accessed

sum = 0;
for (i = 0; i < n; i++) {

  sum += a[i];
}
return sum;



Locality Example #1
int sum_array_rows(int a[M][N]) {
    int i, j, sum = 0;
    for (i = 0; i < M; i++)
        for (j = 0; j < N; j++)
            sum += a[i][j];
    return sum;
}



Locality Example #1

Access Pattern:
stride = 1

M = 3, N=4

Note:  76 is just one possible starting address of array a

int sum_array_rows(int a[M][N]) {
    int i, j, sum = 0;
    for (i = 0; i < M; i++)
        for (j = 0; j < N; j++)
            sum += a[i][j];
    return sum;
}

76 92 108

Layout in Memory

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

a 
[0] 
[0]

a 
[0] 
[1]

a 
[0] 
[2]

a 
[0] 
[3]

a 
[1] 
[0]

a 
[1] 
[1]

a 
[1] 
[2]

a 
[1] 
[3]

a 
[2] 
[0]

a 
[2] 
[1]

a 
[2] 
[2]

a 
[2] 
[3]

1) a[0][0]
2) a[0][1]
3) a[0][2]
4) a[0][3]
5) a[1][0]
6) a[1][1]
7) a[1][2]
8) a[1][3]
9) a[2][0]

10) a[2][1]
11) a[2][2]
12) a[2][3]



Locality Example #2
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int sum_array_cols(int a[M][N]) {
    int i, j, sum = 0;
    for (j = 0; j < N; j++)
        for (i = 0; i < M; i++)
            sum += a[i][j];
    return sum;
}



Locality Example #2
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int sum_array_cols(int a[M][N]) {
    int i, j, sum = 0;
    for (j = 0; j < N; j++)
        for (i = 0; i < M; i++)
            sum += a[i][j];
    return sum;
}

76 92 108

Layout in Memory
a 

[0] 
[0]

a 
[0] 
[1]

a 
[0] 
[2]

a 
[0] 
[3]

a 
[1] 
[0]

a 
[1] 
[1]

a 
[1] 
[2]

a 
[1] 
[3]

a 
[2] 
[0]

a 
[2] 
[1]

a 
[2] 
[2]

a 
[2] 
[3]

M = 3, N=4
a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

Access Pattern:
stride = 3

1) a[0][0]
2) a[1][0]
3) a[2][0]
4) a[0][1]
5) a[1][1]
6) a[2][1]
7) a[0][2]
8) a[1][2]
9) a[2][2]

10) a[0][3]
11) a[1][3]
12) a[2][3]



Compute Points on a Line (Original)
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// Compute y = mx + b for each point
void compute_line(float m, float b, float* points, int n) {
  for(int i = 0; i < n; i++) {
    points[i] = m * points[i];
  }
  for(int i = 0; i < n; i++) {
    points[i] = b + points[i];
  }
}



Compute Points on a Line (Improved)

● Better temporal locality!

44

// Compute y = mx + b for each point
void compute_line(float m, float b, float* points, int n) {
  for(int i = 0; i < n; i++) {
    points[i] = m * points[i];
    points[i] = b + points[i];
  }
}



All systems favor “cache-friendly code”
Write code that has locality!
● Spatial:  access data contiguously, use small strides

● Temporal:  make sure access to the same data is not too far apart in time, keep 
working set reasonably small

How can you achieve locality?
● Adjust memory accesses in code (software) to improve miss rate (MR)

○ Requires knowledge of both how caches work as well as your systemʼs 
parameters

● Proper choice of algorithm

● Loop transformations
45



Summary
Memory Hierarchy
● Successively higher levels contain “most used” data from lower levels

● Accessing the disk is very slow

○ This is why we discourage excess I/O in homework assignments!

● Exploits temporal and spatial locality

● Caches are intermediate storage levels used to optimize data transfers between 
any system elements with different characteristics 

Cache Performance
● Ideal case:  found in cache (hit)

● Bad case:  not found in cache (miss), search in next level
46



Memory 
Allocator



HW Memory
In C: malloc and free are wrappers 
to system calls that reserve space in 
memory, or cancel the reservation.

(System calls deal with memory 
management, I/O stream management, 
access files, access the network.)

But malloc and free are more user 
friendly than the essential system calls.

Implement equivalents:

// acts like ʻmallocʼ and returns address in 
memory
void* getmem(uintptr_t size)  
// acts like ʻfreeʼ and releases memory
void freemem(void* p)    

Note:
Uintptr_t is an integer type that holds 
a pointer.
void* is a pointer to an unspecified type     



HW6:  Approach
1. We use a system call (aka malloc) to get a big chunk of memory - like 4k-10k bytes.
2. We then parcel out pieces of this chunk to individual calls to getmem and mark 

them as reserved.
3. When someone calls freemem, we return the chunks to the set of free chunks.
4. How do we keep track of all of the available chunks vs reserved chunks? 

a. Use something called a "free list", which is a linked list of nodes that store information about 
available chunks. 

b. Shared by both getmem and freemem. 
c. Each block on the free list starts with an uintptr_t integer that gives its size followed by a pointer to 

the next block on the free list. 
d. To help keep data in dynamically allocated blocks properly aligned, we require that all of the blocks 

be a multiple of 16 bytes in size, and that their addresses also be a multiple of 16 (this is the same 
way that the built-in malloc works).



Approach, Cont.
Getmem request? Scan the free list looking for a block of storage that is at least as large 
as the amount requested, delete that block from the free list, and return a pointer to it 
to the caller. 

Freemem:  return the given block to the free list, combining it with any adjacent free 
blocks if possible to create a single, larger block instead of several smaller ones.



What is a memory frame?
typedef struct freeNode {
  uintptr_t size;  

// useable memory
  struct freeNode* next;
} freeNode;

extern freeNode* freelist;
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Addresses
What is the address?

● An integer pointing to the correct byte 
(uintptr_t)

● A pointer to a memory object (void*)

What can you do with it?

● Math - add or subtract an integer to go forward or 
backwards

● Cast between integer and (T*)
● If cast to (freeNode*) - access data of that type

freeNode->size, freeNode->next
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Approach: getting memory blocks
If, a large enough block exists, ʻgetmemʼ splits the block into an appropriate sized chunk 
and pointer to the rest of the block

Else, getmem needs to 

Get a good-sized block of storage from the underlying system.

Add it to the free list

Split it up, yielding a block that will satisfy the request (ʻifʼ condition)

Note, Initial call to getmem finds it with no memory, and results in ʻelseʼ condition.



getmem
get_block (uintptr_t size) {

freeNode* currentNode = freelist;
while(currentNode) {

 if(currentNode->size >= minsize) 
...

      return(uintptr_t)currentNode;
}

return((void*) block+NODESIZE);  
// offset for user's purposes
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getmem void split_node(freeNode* n, uintptr_t size) {
freeNode* newNode =

(freeNode*)((uintptr_t)(n) + size+NODESIZE);

    newNode->size = n->size - size - NODESIZE;
   newNode->next = n->next;

    n->size = size;
    n->next = newNode;

   ….
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Approach: returning memory
● Freemem gets a pointer to a block of storage and adds it to the free list, combining 

it with  adjacent blocks  on the list. 
● Freemem isn't told is how big the block is and must find the size of the block. 
● The usual way this is done is to have getmem actually allocate a block of memory 

that is a bit larger than the user's request, store the free list node or just the size of 
the block at the beginning of that block.

● The returned pointer is actually points a few bytes beyond the real start of the 
block.

● When freemem is called, it can take the pointer it is given, subtract the appropriate 
number of bytes to get the real start address of the block, and find the size of the 
block there.



Approach: returning memory
● Freemem gets a pointer to a block of storage and adds it to the free list, combining 

it with  adjacent blocks  on the list. 
● Freemem isn't told is how big the block is and must find the size of the block. 
● The usual way this is done is to have getmem actually allocate a block of memory 

that is a bit larger than the user's request, store the free list node or just the size of 
the block at the beginning of that block.

● The returned pointer is actually points a few bytes beyond the real start of the 
block.

● When freemem is called, it can take the pointer it is given, subtract the appropriate 
number of bytes to get the real start address of the block, and find the size of the 
block there.    p-sizeof(freelist_node)->size

Memory block
Freelist
node



Use ‘assert’ in C:  void check_heap ();
Check for possible problems with the free list data structure. 
This function should use asserts to verify that:

● Blocks are ordered with increasing memory addresses
● Block sizes are positive numbers and no smaller than 

whatever minimum size you are using
● Blocks do not overlap (the start + length of a block is not 

an address in the middle of a later block on the list)
● Blocks are not touching (the start + length of a block 

should not be the address of the next block on the list)

If no errors are detected, this function should return silently 
after performing these tests. If an error is detected, then an 
assert  should fail and cause the program to terminate at 
that point. 

void check_heap() {

  if (!freelist) return;
  freeNode* currNode = freelist;
  uintptr_t mins= \        
currNode->size;

  < …….>
  assert (mins >= MINSIZE);
}



Next up: C++           (Want to read ahead?)
Best place to start: C++ Primer, Lippman, Lajoie, Moo, 5th ed., Addison-Wesley, 
2013

Every serious C++ programmer should also read: Effective C++, Meyers, 3rd ed., 
Addison-Wesley, 2005

Best practices for standard C++ 

Effective Modern C++, Meyers, OʼReilly, 2014
Additional “best practices” for C++11/C++14

Good online source: cplusplus.com



What is C++ ?
A big language - much bigger than C

Conveniences in addition to C (new/delete, function overloading, 
bigger std library)

Namespaces - similar to Java

Extras (casts, exceptions, templates, lambda functions)

Object Oriented - has classes and objects similar to Java



Why C++ ?
● C++ is C-like in

○ User-managed memory
○ Header files
○ Still use pointers

● C++ is Java like in
○ Object Oriented
○ Modern additions to language

● Knowing C++ may help understand both C & Java better


