
CSE 374: Lecture 18
Hexadecimal and number storage

Memory Reminder

Address ʻ0ʼ
Address ʻ4ʼ

Address ʻ264-1ʼ or ʻ232-1ʼ

code heap ->globals <- stack

char* ch

Number systems and BASE
Generally use base 10

(10 fingers)

234

2x100 + 3x10 + 4x1

2x102 + 3x101 + 4x100

Digital systems - base 2

(binary)

234 = 0b11101010

1x27 + 1x26 + 1x25 + 0x24 +
1x23 +0x22+ 1x21 + 0x20

Base 16 - very compact

(hexadecimal)

234 = 0xEA

14x161 + 10x160

Need 16 digits,
so we used [0-9A-F]

Notice: 234 takes 3 digits to express in base 10, 8 in base 2, and 2 in base 16.

Integer representations
➔ The hardware (and C) supports two flavors of integers

◆ unsigned – only the non-negatives
◆ signed – both negatives and non-negatives

➔ There are only 2W distinct bit patterns of W bits, so...
◆ Cannot represent all the integers
◆ Unsigned values: 0 ... 2W-1 <= 24-1 -> 1111 -> 23+22+21+20 -> 8+4+2+1 -> 15
◆ Signed values: -2W-1 ... 2W-1 -1

➔ Reminder: terminology for binary representations

“Most-significant” / “high-order” bit(s) “Least-significant” / “low-order” bit(s)

0010010110101011

Digital systems are ʻonʼ
or ʻoff ,̓ thus, Binary.

Signed Ints (obvious solution)
4 bit signed int
 Most significant bit is reserved for the sign
 Changes the range to [-2w-1-1, 2w-1 -1]

Adding unsigned ints :
(add and carry normally)

 0101
+0011

 1000

Adding signed ints : (gets
tricky - notice
4-3 != 4+-3)

 0100
+1011

 1111 = 15

Twos-complement

Imagine the first bit is ʻsubtract the value of
that digit ,̓ so 1111 = (7)-(8), 1010 = (2)-(8)

Old version - notice the two different
representations of ʻ0ʼ

Twos-complement: Benefits
Only 1 representation of 0

Most-significant bit is still the sign

Negate a value
 Bitwise complement + 1

0101 = 1010 + 1 = 1011

Adding becomes easy again:

(4 - 3 = 4 + -3 = 1)
0100 + 1101 = 0001

Twos-complement and unsigned ints
Get the two-complement
number by subtracting 2w from
the unsigned number of the
same representation:

Use the same algorithm for
addition, so hardware
implementation is simpler.

What happens if you ‘overflow’
Overflow: have numbers too big or small for your
number of digits.

(Remember, using 4 bits, unsigned = [0,15] and
signed [-8,7]

6+4 = ? (signed) 15+2 = ? (unsigned)

-6 - 6 = ? (signed) 12-14 = ? (unsigned)

Notes: You may get a warning for overflow with
two-complement numbers, but probably not with
unsigned numbers.

 0110
+0100

 1010 (-6!)

 1010
+1010

 0100 (4!)

 1111
+0010

 0001 (1!)

 1100
-1110

 1110 (14!)

https://www.swarthmore.edu/NatSci/echeeve1/Ref/BinaryMath/BinaryMath.html

C: ‘int’ and ‘unsigned’
int tx, ty;
unsigned ux, uy;

Explicit casting between signed & unsigned:
tx = (int) ux;
uy = (unsigned) ty;

Implicit casting also occurs via assignments and function
calls:
tx = ux;
uy = ty;

The gcc flag -Wsign-conversion produces warnings for
implicit casts, but -Wall does not!

Explicit casting - doesnʼt change underlying bits,
they just get interpreted differently! This is NOT
taking the absolute value.

Note: C doesnʼt dictate the integer
representation method, the compiler does.
Casting an integer to unsigned will result in
different values depending on that choice.

Note: in C, constants are assumed to be signed,
unless the ʻUʼ suffix is used: 15U -> 15 unsigned

Float Point Numbers
● Fractional binary numbers work in the same fashion as fractional decimal

numbers
○ 1.25 = 1•100 + 2•10-1 + 5•10-2

○ 0b1.01 = 1•20 + 0•2-1 + 1•2-2 = 1 + 1/4 = 1.25
● can have repeating just like decimal

○ 1/10 = 0b0.0001100110011[0011]…
● floating point values only represent numbers that can be written x • 2y

● like scientific notation
○ not 0b0.000101 but 1.01 • 24

● Floating point standard established
○ 1985, IEEE 754 - before that every system had a different approach

Floating Point Numbers
● Numerical form: V10 = (–1)s * M * 2E

○ Sign bit s determines whether number is negative or positive
○ Significand (mantissa) M normally a fractional value in range [1.0,2.0)
○ Exponent E weights value by a (possibly negative) power of two

s E: encodes exponent M: encodes fraction

Floating Point Numbers
● Numerical form: V10 = (–1)s * M * 2E

s E: encodes exponent M: encodes fraction

● For single precision (32 bits), we have s = 1 bit, E = 8 bits, M = 23 bits
● For double precision (64 bits), we have s = 1 bit, E = 11 bits, M = 52 bits
● Since we have a finite number of bits, some values will have to be

approximated
● Special values

○ zero: s == 0, E == 0, M == 0
○ +∞, -∞: E == all ones, M == 0
○ NaN (not a number): E = all ones, M != 0
○ special values can pollute numerical computation

Floating Point Numbers
● As with integers, floats suffer from the fixed number of bits available to

represent them
○ Can get overflow/underflow, just like ints

● Some “simple fractions” have no exact representation (e.g., 0.2)
● Can also lose precision, unlike ints “Every operation gets a slightly wrong

result”
● Mathematically equivalent ways of writing an expression may compute

different results
● Violates associativity/distributivity
● Never test floating point values for equality!
● Careful when converting between ints and floats!

Floating Points in C
● C offers two levels of precision

○ float single precision (32-bit)
○ double double precision (64-bit)

● #include <math.h> to get INFINITY and NAN constants
● Equality (==) comparisons between floating point numbers are

tricky
○ often return unexpected results
○ Just avoid them!

Youʼll need to link that at compile time:
> gcc -lm myprogram.c

Data type conversions
● Implicit conversion for math operations ⇒
● Conversions between data types:

○ Casting between int, float, and double changes the bit representation.

● int → float
○ May be rounded: overflow not possible

● int → double or float → double
○ Exact conversion (32-bit ints; 52-bit frac + 1-bit sign)

● long int → double
○ Rounded or exact, depending on word size

● double or float → int
○ Truncates fractional part (rounded toward zero)
○ E.g. 1.999 -> 1, -1.99 -> -1

● “Not defined” when out of range or NaN: generally sets to Tmin

What about Hexadecimal?
Generally use base 10

(10 fingers)

234

2x100 + 3x10 + 4x1

2x102 + 3x101 + 4x100

Digital systems - base 2

(binary)

234 = 0b11101010

1x27 + 1x26 + 1x25 + 0x24 +
1x23 +0x22+ 1x21 + 0x20

Base 16 - very compact

(hexadecimal)

234 = 0xEA

14x161 + 10x160

Need 16 digits,
so we used [0-9A-F]

Computers represent things in binary. However, we can capitalize on different
representations for compact storage, or for particular needs. One hexadecimal digit
takes precisely 4 bits (one nibble) to store. Because 16 corresponds to 2 bytes conversion
from binary to hexadecimal is convenient. Simultaneously, hex can be easier for humans
to read and understand.

Hexadecimal in C
There is no unique type for hexadecimal in C. We use ʻunsigned intʼ or ʻunsigned char .̓

Remember, sizeof(int) = 2 or 4 [bytes]
and sizeof(char) = 1 [byte] (2 hex digits)

An unsigned char can hold values up to 255 or 0xFF (maximum two digit hex value)

unsigned char ahexvalue = 0xFE;
uintptr_t mymem = (uintptr_t) malloc (16);
for (int i = 0; i < 16; i++) {

((unsigned char)(mymem+i)) = 0xFE;
}

What about uintptr_t ?
We use ʻuintptr_tʼ as a type to hold a memory address:

uintptr_t: Integer type capable of holding a value converted from a void pointer and
then be converted back to that type with a value that compares equal to the original
pointer.

● Long integer / changes if you move to a different memory model so it is more
portable to use these types

● #include <stdint.h>

Memory Alignment
● Structs are allotted contiguous memory.
● Position in memory dictated by order of

declaration
● HOWEVER, it is more efficient to align addresses

with multiples of type widths.
○ ints - address multiple of 4
○ doubles - address multiple of 8
○ Pointers - address multiple of 8

● Entire struct size guided by largest data type it
contains

Memory Alignment

24 bytes total

Memory Alignment

32 bytes total

Use sizeof to get struct sizes!

