CSE 374: Lecture 18

Hexadecimal and number storage

Number systems and BASE

Generally use base 10	Digital systems - base 2	Base 16 - very compact
(10 fingers)	(binary)	(hexadecimal)
234	234 = 0b11101010	234 = 0xEA
2x100 + 3x10 + 4x1	$1x2^{7} + 1x2^{6} + 1x2^{5} + 0x2^{4} + 1x2^{3} + 0x2^{2} + 1x2^{1} + 0x2^{0}$	14x16¹ + 10x16⁰
$2x10^2 + 3x10^1 + 4x10^0$	1XZ TUXZ T 1XZ T UXZ	Need 16 digits,
		so we used [0-9A-F]

Notice: 234 takes 3 digits to express in base 10, 8 in base 2, and 2 in base 16.

Integer representations

Digital systems are 'on' or 'off', thus, Binary.

- → The hardware (and C) supports two flavors of integers
 - unsigned only the non-negatives
 - signed both negatives and non-negatives
- → There are only 2^W distinct bit patterns of W bits, so...
 - Cannot represent all the integers
 - Unsigned values: 0 ... $2^{W}-1$ <= $2^{4}-1$ -> 1111 -> $2^{3}+2^{2}+2^{1}+2^{0}$ -> 8+4+2+1 -> 15
 - Signed values: -2^{W-1} ... 2^{W-1} -1
- → Reminder: terminology for binary representations

"Most-significant" / "high-order" bit(s) "Least-significant" / "low-order" bit(s)

0010010110101011

Signed Ints (obvious solution)

4 bit signed int

Most significant bit is reserved for the sign Changes the range to $[-2^{w-1}-1, 2^{w-1}-1]$

Adding unsigned ints :	Adding signed ints : (gets
(add and carry normally)	tricky - notice
	4-3 != 4+-3)
0101	
+0011	0100
	+1011
1000	
	1111 = 15

Twos-complement

Imagine the first bit is 'subtract the value of that digit', so 1111 = (7)-(8), 1010 = (2)-(8) Old version - notice the two different representations of '0'

Twos-complement: Benefits

Only 1 representation of 0

Most-significant bit is still the sign

Negate a value Bitwise complement + 1

0101 = 1010 + 1 = 1011

Adding becomes easy again:

(4 - 3 = 4 + -3 = 1)0100 + 1101 = 0001

Twos-complement and unsigned ints

Get the two-complement number by subtracting 2^w from the unsigned number of the same representation:

Use the same algorithm for addition, so hardware implementation is simpler.

What happens if you 'overflow'

Overflow: have numbers too big or small for your number of digits. (Remember, using 4 bits, unsigned = [0,15] and signed [-8,7]		0110 +0100	1111 +0010 0001 (1!)
		 1010 (-6!)	
6+4 = ? (signed)	15+2 = ? (unsigned)	1010	1100
-6 - 6 = ? (signed)	12-14 = ? (unsigned)	+1010	-1110
Notes: You may get a two-complement nun	warning for overflow with obers, but probably not with	0100 (4!)	1110 (14!)

https://www.swarthmore.edu/NatSci/echeeve1/Ref/BinaryMath/BinaryMath.html

unsigned numbers.

C: 'int' and 'unsigned'

int tx, ty; unsigned ux, uy;

Explicit casting between signed & unsigned:
tx = (int) ux;
uy = (unsigned) ty;

Implicit casting also occurs via assignments and function calls: **tx** = **ux**;

uy = ty;

The gcc flag -*Wsign-conversion* produces warnings for implicit casts, but -*Wall* does not!

Explicit casting - doesn't change underlying bits, they just get interpreted differently! This is NOT taking the absolute value.

Note: C doesn't dictate the integer representation method, the compiler does. Casting an integer to unsigned will result in different values depending on that choice.

Note: in C, constants are assumed to be signed, unless the 'U' suffix is used: 15U -> 15 unsigned

Float Point Numbers

- Fractional binary numbers work in the same fashion as fractional decimal numbers
 - $\circ \quad 1.25 = 1 \cdot 10^{0} + 2 \cdot 10^{-1} + 5 \cdot 10^{-2}$
 - $\circ \quad 0b1.01 = 1 \cdot 2^0 + 0 \cdot 2^{-1} + 1 \cdot 2^{-2} = 1 + 1/4 = 1.25$
- can have repeating just like decimal

○ 1/10 = 0b0.000110011[0011]...

- floating point values only represent numbers that can be written x 2^y
- like scientific notation

not 0b0.000101 but 1.01 • 2⁴

- Floating point standard established
 - 1985, IEEE 754 before that every system had a different approach

Floating Point Numbers

- Numerical form: V10 = (-1)s * M * 2E
 - Sign bit **s** determines whether number is negative or positive
 - Significand (mantissa) M normally a fractional value in range [1.0,2.0)
 - Exponent E weights value by a (possibly negative) power of two

Floating Point Numbers

• Numerical form: V10 = (-1)s * M * 2E

s E: encodes exponent M: encodes fraction

- For single precision (32 bits), we have s = 1 bit, E = 8 bits, M = 23 bits
- For double precision (64 bits), we have s = 1 bit, E = 11 bits, M = 52 bits
- Since we have a finite number of bits, some values will have to be approximated
- Special values
 - zero: s == 0, E == 0, M == 0
 - \circ + ∞ , - ∞ : E == all ones, M == 0
 - NaN (not a number): E = all ones, M != 0
 - special values can pollute numerical computation

Floating Point Numbers

- As with integers, floats suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow, just like ints
- Some "simple fractions" have no exact representation (e.g., 0.2)
- Can also lose precision, unlike ints "Every operation gets a slightly wrong result"
- Mathematically equivalent ways of writing an expression may compute different results
- Violates associativity/distributivity
- Never test floating point values for equality!
- Careful when converting between ints and floats!

Floating Points in C

- C offers two levels of precision
 - float single precision (32-bit)

You'll need to link that at compile time:

> gcc -lm myprogram.c

- double double precision (64-bit)
- #include <math.h>to get INFINITY and NAN constants
- Equality (==) comparisons between floating point numbers are tricky
 - often return unexpected results
 - Just avoid them!

Data type conversions

- Implicit conversion for math operations ⇒
- Conversions between data types:
 - Casting between int, float, and double changes the bit representation
- int \rightarrow float
 - May be rounded: overflow not possible
- int \rightarrow double or float \rightarrow double
 - Exact conversion (32-bit ints; 52-bit frac + 1-bit sign)
- long int \rightarrow double
 - Rounded or exact, depending on word size
- double or float \rightarrow int
 - Truncates fractional part (rounded toward zero)
 - E.g. 1.999 -> 1, -1.99 -> -1
- "Not defined" when out of range or NaN: generally sets to Trum

What about Hexadecimal?

Generally use base 10	Digital systems - base 2	Base 16 - very compact
(10 fingers)	(binary)	(hexadecimal)
234	234 = 0b11101010	234 = 0xEA
2x100 + 3x10 + 4x1	$1x2^{7} + 1x2^{6} + 1x2^{5} + 0x2^{4} + 1x2^{3} + 0x2^{2} + 1x2^{1} + 0x2^{0}$	14x16¹ + 10x16⁰
$2x10^2 + 3x10^1 + 4x10^0$	172 '072 ' 172 ' 072	Need 16 digits,
		so we used [0-9A-F]

Computers represent things in binary. However, we can capitalize on different representations for compact storage, or for particular needs. One hexadecimal digit takes precisely 4 bits (one nibble) to store. Because 16 corresponds to 2 bytes conversion from binary to hexadecimal is convenient. Simultaneously, hex can be easier for humans to read and understand.

Hexadecimal in C

There is no unique type for hexadecimal in C. We use 'unsigned int' or 'unsigned char'. Remember, sizeof(int) = 2 or 4 [bytes] and sizeof(char) = 1 [byte] (2 hex digits)

An unsigned char can hold values up to 255 or 0xFF (maximum two digit hex value)

```
unsigned char ahexvalue = 0xFE;
uintptr_t mymem = (uintptr_t) malloc (16);
for (int i = 0; i < 16; i++) {
    *((unsigned char*)(mymem+i)) = 0xFE;
```

What about uintptr_t?

We use 'uintptr_t' as a type to hold a memory address:

uintptr_t: Integer type capable of holding a value converted from a void pointer and then be converted back to that type with a value that compares equal to the original pointer.

- Long integer / changes if you move to a different memory model so it is more portable to use these types
- #include <stdint.h>

Memory Alignment

- Structs are allotted contiguous memory.
- Position in memory dictated by order of declaration
- HOWEVER, it is more efficient to align addresses with multiples of type widths.
 - ints address multiple of 4
 - doubles address multiple of 8
 - Pointers address multiple of 8
- Entire struct size guided by largest data type it contains

5 struct studenta { char *name; 6 char section; 8 int late_days; double grade; 9 .0 3; struct studentb { .3 char *name; char section; .4 .5 double grade; int late_days; .6 7 }:

